
Improved Circular Layouts

Emden R. Gansner and Yehuda Koren

AT&T Labs — Research

Florham Park, NJ 07932, USA

{erg,yehuda}@research.att.com

Abstract. Circular graph layout is a drawing scheme where all nodes are placed

on the perimeter of a circle. An inherent issue with circular layouts is that the

rigid restriction on node placement often gives rise to long edges and an overall

dense drawing. We suggest here three independent, complementary techniques

for lowering the density and improving the readability of circular layouts. First, a

new algorithm is given for placing the nodes on the circle such that edge lengths

are reduced. Second, we enhance the circular drawing style by allowing some of

the edges to be routed around the exterior of the circle. This is accomplished with

an algorithm for optimally selecting such a set of externally routed edges. The

third technique reduces density by coupling groups of edges as bundled splines

that share part of their route. Together, these techniques are able to reduce clutter,

density and crossings compared with existing methods.

1 Introduction

Circular layouts are among the most prominent and oldest conventions used to draw

graphs. In such layouts, nodes are drawn on a circle, while the edges connecting these

nodes are line segments passing within the circle, e.g., Figure 1(a). This drawing con-

vention is often used for the layout of networks and systems management diagrams,

where it naturally captures the essence of ring and star topologies. It can be also used

for other kinds of graphs, such as social networks and WWW graphs. In particular, a

circular layout is appropriate for applications that emphasize the clustering decompo-

sition of a graph, where each cluster is drawn on a separate circle. Much work [1, 4,

12, 13, 17, 18, 20] has been done on these layouts, most of it addressing both the layout

of a single circle as well as positioning multiple circles together in order to show the

various clusters composing the full graph. Here we concentrate on the former. Circular

layouts are highly regularized – nodes placed on a circle – achieving a very clear de-

piction of each individual node. A node cannot be occluded by another node or by an

edge. Moreover, since it is impossible to have three collinear nodes, the problem of two

edges obscuring each other is avoided. In general, these layouts can provide a compact

presentation, focusing on individual nodes and edges. Additionally, well-designed cir-

cular layouts sometimes reveal global properties of the graph such as symmetries and

patterns of collective behavior. On the other hand, this strong regularity can obscure

other information. For example, these drawings can be very dense, and following paths

on them can be difficult.

In this work we suggest methods for improving the clarity of circular layouts through

better node placement and edge routing. This is achieved using three contributions. The

first shows how to adapt traditional energy based node placement considerations in or-

der to shorten edges in circular layouts. This is different from most previous work which

concentrated on reducing edge crossings. Experiments show that our method is com-

petitive in terms of edge crossing minimization, while being constantly better in terms

(a) (b) (c)

(d) (e)

Fig. 1. Variations on circular layouts of a random graph (|V | = 80,|E| = 241): (a) random order;

(b) edge-length minimizing order; (c) bundling edges to save ink and to improve area utilization

(colors used to enhance readability); (d) exterior routing lessens crossings and alleviates density;

(e) combining exterior routing with edge bundling.

of overall edge length. Such a shortening of edge lengths allows the use of less “ink”

for drawing the graph, thereby improving clarity. This ink saving paradigm brings us to

the second contribution of the paper. We suggest a novel edge routing technique, which

uses less ink compared with the common convention of drawing edges as straight lines.

This is performed by carefully bundling together line segments between a few edges in

a way that frees up drawing area without compromising structural clarity. Considering

non-straight line edges opens up even more possibilities for better clarity. Accordingly,

our third contribution suggests routing some of the edges through the external face. The

externally routed edges are optimally selected in order to minimize certain criteria. In

particular, external routing can be very effective in reducing edge crossings.

When used together, one normally performs node placement, followed by exterior

routing, then edge bundling. Sections 2-4 consider these techniques in that order. Ex-

perimental studies for the techniques are given in Section 5.

2 Node placement

We are looking for the “best placement” of the n nodes of a graph G(V = {1, . . . , n}, E).
By convention, we assume nodes are equally spaced on the circle, which reduces the

problem to finding a circular ordering of the nodes. This requirement imposes a cer-

tain regularity on the resulting layouts, while having no effect on the number of edge

crossings, since only the ordering affects edge crossings.

Some related computational problems are known to be NP-hard. One example is

the Minimum Circular Arrangement problem, where nodes are arranged on a circle

(with equal gaps) in order to minimize the total angular edge lengths. This problem

is reducible from the extensively studied NP-complete problem of Minimum Linear

Arrangement [9]. Additional related circular arrangement problems and applications

are mentioned in [6, 14]. Another NP-hard problem is Circular Crossing Minimization

[15], where the goal is to minimize the number of edge crossings in the layout. Given the

NP-hardness of the relevant problems, our approach is based on heuristics that cannot

guarantee finding an optimal solution.

2.1 Mean- and median- iterations

While previous work [1, 4, 12, 17] explicitly addressed edge crossings, we prefer to deal

with the simpler node-node interactions governing edge lengths. That way we can use

ideas developed in other areas of graph drawing, which seek to minimize edge length.

The rationale here is that long edges are hard to follow, prone to crossings, and cause

unnecessary clutter and density. One such class of methods consists of force-directed

algorithms, which define the layout by minimizing a cost function. The methods of Tutte

[21] and Hall [10] are probably closest to the one used here. In addition, our technique

is closely related to the mean-iteration and the median-iteration heuristics widely used

within the crossing minimization phase of Sugiyama-based digraph drawing algorithms

[19].

We denote the coordinates of a node i ∈ V by (xi, yi) ∈ R
2. Assume that the nodes

are arranged on the unit circle centered at the origin. We would like to minimize the

total squared edge lengths, resulting in the following optimization problem:

min
x,y

∑

〈i,j〉∈E

(xi − xj)
2 + (yi − yj)

2

subject to : x2
i + y2

i = 1, i = 1, . . . , n

(1)

Tutte [21] and Hall [10] dealt with strategies to minimize the same function, but

here we also need to account for the unit circle constraints. Such equality constraints

are usually addressed by Lagrange multipliers. Therefore, for each node i, we introduce

a Lagrange multiplier λi, and define the function:

f(x, y, λ) =
∑

〈i,j〉∈E

(xi − xj)
2 + (yi − yj)

2 +
n

∑

i=1

λi(x
2
i + y2

i − 1) (2)

Any minimum of (1) must be a zero for all partial derivatives of (2). In other words,

we require ∂f/∂x = 0, ∂f/∂y = 0, ∂f/∂λ = 0. Notice that ∂f/∂λ = 0 means that

all constraints are satisfied. The other equalities, ∂f/∂x = ∂f/∂y = 0, imply that for

each node i:

(xi, yi) =
1

1− λi

∑

j∈N(i)(xj , yj)

‖N(i)‖

where N(i) = {j | 〈i, j〉 ∈ E} is the set of neighbors of i. Notice that the 1
1−λi

multi-

plier provides the degree of freedom necessary for satisfying the unit circle constraint.

In plain words, these equations state that each node on the unit circle should lie on the

line connecting the origin and the barycenter of its neighbors. Equivalently, the angular

coordinate of each node is the mean of the angular coordinates of its neighbors, while

the radial coordinate is always 1.

To solve this problem, we fix the positions of all the nodes but one, giving rise to

an iterative optimization process, which we naturally name the mean iteration. At each

iteration, we sequentially move each single node to the barycenter of its neighbors, and

then project it back to the circle:

(1) (xi, yi)←

∑

j∈N(i)(xj , yj)

‖N(i)‖
(2) (xi, yi)←

(xi, yi)

‖(xi, yi)‖

A known problem with the mean iteration is that the global minimum of (1) is attained

when all nodes are positioned at the same location. Since we are looking for more use-

ful local minima, we avoid such a collapse of the layout by interfering with the process

after each few tens of iterations and making the gaps between consecutive nodes uni-

form. That is, we preserve the current angular order of the nodes, but impose a uniform

distribution along the circle. Additionally (or, alternatively), we adopt the anchoring

mechanism suggested by Tutte, fixing the positions of three nodes, which prevents the

collapse of the layout. During the process we change the anchors to avoid bias toward

specific nodes.

While the mean iteration addresses squared edge lengths, a similar median iteration

addresses non-squared edge lengths. The only difference is the use of the median instead

of the mean. Therefore, in this algorithm, the coordinates of a node are iteratively de-

termined by the component-wise median of its neighbors’ coordinates, projected back

onto the circle. We experienced slightly better results using median iteration over mean

iteration in terms of crossing minimization.

The complexity of a single iteration is O(n+|E|). The number of required iterations

is less clear. We regularly use O(n) iterations.

2.2 Local refinement through dynamic programming

The median (or mean) iteration is a continuous approximation to the circular ordering

problem. We derive the circular order by sorting the nodes according to their angular

coordinates. The resulting circular order can be refined by utilizing an algorithm that

explicitly considers the discrete nature of the problem. At this stage, we hope that the

median iteration already gave us an adequate global positioning of the nodes. Therefore,

we opt for using a localized refinement procedure. This refinement procedure considers

every sequence of k nodes, and reorders the sequence in a way that minimizes the total

edge length.

More formally, assume that the circle contains n equally spaced points named

0, 1, . . . , n− 1, where point i is located at (cos 2πi
n

, sin 2πi
n

). In addition, each of the n
nodes is uniquely associated with one of the n circle points via the bijection p(i) : V →
{0, 1, . . . , n− 1}. The (angular) distance between two nodes i and j is defined as:

dij = min (p(i)− p(j) mod n, p(j)− p(i) mod n)

Given k nodes V = {v1, v2, . . . , vk}, located consecutively at p(v1),p(v1)+1, . . . ,p(v1)+
k−1, we would like to reorder V to minimize l(V), the total length of the edges adjacent

to V , which is defined as:
l(V) =

∑

〈i,j〉∈E,i∈V

dij

Minimization of l(V) is done by a dynamic programming algorithm which re-

arranges increasingly larger subsets of V . The pseudocode is given in Figure 2. The

complexity of the algorithm is O(2k + |E(V)|), where E(V) is the set of edges con-

nected to V . Typical values of k are between 5 and 10 (our default is 6). We iteratively

run it on each of the n (overlapping) subsequences of length k, so the running time of a

full sweep optimizing each subsequence is O(n(2k + |E|)). We run a few sweeps until

the total edge length cannot be further reduced. Typically, a very low number of sweeps

(10 or less) is required for convergence.

Figure 1(b) illustrates the application of these techniques to the initial layout of

Figure 1(a).

3 Exterior routing
Node ordering, using the method described in Section 2 (or one of the methods de-

scribed in the literature [1, 4, 12, 17]), improves the readability of the layout by remov-

ing edge crossings and shortening edges. At this stage, further readability improvement

can be achieved without altering the node positions. This is accomplished by taking a

subset of the edges from the interior of the circle, and routing them around the exterior

of the circle, as depicted in Figure 1(d). Importantly, this can be done in an optimal way

which maximizes the number of extracted edges or minimizes the number of crossings.

Since exterior routing of an edge is inherently longer than interior routing, we

should utilize the exterior routing carefully, and make sure that edges routed externally

are readable. Therefore, we do not allow any edge crossing within the external face.

Notice that two edges cross in the external face if and only if they cross internally.

We associate weights with the edges (as explained below), and strive to maximize

the total weight of the extracted edges. This is carried out using a dynamic program-

ming algorithm. Before describing the algorithm, we make an observation about “edge

flipping”. Each exterior edge 〈i, j〉 can be drawn in two ways: either along the short arc

connecting i and j, or along the complementary long arc connecting i and j. Therefore,

we assume that all exterior edges are flipped so that no edge is passing over the length-1

arc connecting point n − 1 with point 0 on the circle. Note that this flipping will not

introduce any crossing into a crossing-free layout. As a consequence, we can cut the

circle between point n− 1 and 0, where no edge passes, and solve an equivalent prob-

lem on a line starting at 0 and ending at n − 1. By solving the problem on a line, we

determine which edges should be extracted. Then, each of these edges will be drawn on

the exterior of the circle along the shorter of the two possible arcs.

The intuition behind the algorithm for solving the problem on the line is based

on likening each edge to parentheses, where the left endpoint of the edge opens the

parenthesis, and the right endpoint closes it. Accordingly, a non-crossing set of edges

is equivalent to a valid sequence of nested parentheses. This induces the following re-

currence relation, where pij is the maximal weighted sum of edges that can be legally

routed between i and j:

Function MinCA DP (G(V,E), p, V = {v1, v2, . . . , vk} ⊂ V , ordering)

% Given a graph (G), circular node positioning (p), and a subset of consecutive nodes (V)

% ordered from v1 (leftmost) to vk (rightmost)

% compute an ordering of V (ordering) that minimizes total edge length

% Data structure: A table T whose entries are indexed by subsets of V

% The function Cut(i, S) returns the number of edges between i and S ⊂ V.

for each i ∈ V compute

left(i) = {〈i, j〉 ∈ E | d(j, v1) < d(j, vk), j /∈ V}
right(i) = {〈i, j〉 ∈ E | d(j, vk) < d(j, v1), j /∈ V}

end for

% Initialize table:

for every S ⊆ V do

table[S].cost←∞
end for

table[∅].cost← 0
table[∅].cut←=

∑

i∈V |left(i)|

% Fill table:

for i = 1 to k do

for every S ⊂ V, |S| = i− 1 do

cutS ← table[S].cut
new cost← table[S].cost + cutS % total edge length is a sum of cuts

for every j ∈ V − S do

if table[S ∪ {j}].cost > new cost then

table[S ∪ {j}].cost← new cost
table[S ∪ {j}].right vtx← j
table[S ∪ {j}].cut← cutS − |left(j)|+ |right(j)| − Cut(j, S) + Cut(j,V − S)

end if

end for

end for

end for

% Retrieve optimal ordering:

S ← V
for i = k to 1 do

v ← table[S].right vtx
ordering[i]← v
S ← S − {v}

end for

end

Fig. 2. A dynamic programming algorithm for reordering a sequence of nodes in order to mini-

mize total edge length

pi,i+1 = wi,i+1 i = 0, . . . , n− 2
pi,j = wi,j + maxi<k<j{pik + pkj} i = 0, . . . , n− 3, i + 1 < j < n

(3)

Here, wij is the weight of 〈p−1(i),p−1(j)〉 ∈ E. Also, wij = 0 if 〈p−1(i),p−1(j)〉 /∈
E. The target value, p0,n−1, is computed in time O(n2) by dynamic programming.

This value indicates the maximal weighted sum of edges that can be extracted. The

edges themselves are easily recovered using an auxiliary data structure which enables

tracking the computation of p0,n−1.

The choice of edge weights (wij) allows flexibility in the optimization goal. Our de-

fault is to pick the weights in a way that ensures minimizing the number of edge cross-

ings. To this end, we set wij to the number of crossings involving 〈p−1(i),p−1(j)〉. In

this way, the maximized value p0,n−1 is exactly the number of saved edge crossings.

Note that there is no problem of double counting, since two extracted edges cannot

cross each other.

Our experience shows that exterior routing is a very effective technique, which can

remove a significant portion of the edge crossings. The effect is shown in Figure 1(d)

and studied in Section 5.

An additional pleasing outcome of exterior routing is that it tends to extract many

of the short edges, such as edges of length 2. These edges are often hard to read when

drawn as straight lines, as they are almost collinear with the adjacent length-1 edges.

Furthermore, collinearity issue of specific edges can be explicitly addressed by increas-

ing their weights, thus encouraging the algorithm to pick them for exterior routing.

4 Edge bundling

After node places are computed and possibly some edges are extracted to be drawn

outside the circle, we can further improve the clarity of the drawing by using edge

bundling. The essence of this technique is a controlled deformation of the edges, such

that groups of edges share long common segments, thereby improving the utilization of

the drawing area by saving ink. Put differently, while the most economical way to draw

a single edge is by using a straight line, when displaying of group of edges, there might

be more efficient ways. For illustration, consider Figure 1(c,e).

The idea of bundling edges is related to the work on confluent drawing [3], where

edge crossings are eliminated by grouping edges in tracks. Newbery [16] applied bund-

ling to Sugiyama-style layouts to reduce clutter. Additionally, we were inspired by a

recent work by Holten and van Wijk [11] that suggested bundling edges based on hi-

erarchical structure associated with the nodes. Our approach is based on a different

technique for bundling edges. In the following, we split the description of the technique

into two parts. First, we describe how to bundle together a given set of edges in a way

that maximizes area utilization and readability. Second, we describe the algorithm for

computing the sets of edges that will be bundled.

Consider the case where we are given a set of m lines (“edges”), Q = {e1 =
(v1, u1), e2 = (v2, u2), . . . , ek = (vm, um)}, where vi, ui ∈ R

2. In the accompanying

example, given in Figure 3, this set includes the 4 edges (A,E), (B,F), (C,G) and

(D,H). Our first step is to divide the 2m endpoints of the edges into two equally sized

sets – S (“sources”) and T (“targets”) – such that for each (vi, ui) ∈ Q, either vi ∈
S, ui ∈ T , or ui ∈ S, vi ∈ T . The intention here is to produce two compact sets,

minimizing Euclidean distances between nodes belonging to the same set. We achieve

this by a variant of the K-means algorithm, where we iteratively assign each point to

the set with the closer mean while continually updating the means. Accordingly, in the

given example we would choose S = {A,B,C,D}, T = {E,F,G,H}.

A
B
C
D

E
F
G
H

M1 M2
A
B
C
D

E
F
G
H

M1 M2
A
B
C
D

E
F
G
H

Step 1 Step 2 Step 4Step 3

A
B
C
D

E
F
G
H

Fig. 3. Non-crossing edges are bundled together thereby freeing up drawing area

The next step is to compute the centroids of S and T , denoted as S̄ and T̄ , respec-

tively. We denote by L the line containing S̄ and T̄ . The prospective bundling should

pass along this line. More specifically, we compute two points – M1 and M2 – on L
such that the bundling is carried out by replacing the original line segments by the fol-

lowing line segments: First, a line from each node of S to M1, the meeting point of the

“sources”. Then, a line from M1 to M2. Finally, a line from each node of T to M2, the

meeting point of the “targets”. See Step 3 in Figure 3. Since we want to reduce the use

of ink, the exact positions of M1 and M2 minimize the total line length:

(M1,M2) = argmin
M1,M2

∑

p∈S

‖M1 − p‖+ ‖M1 −M2‖+
∑

p∈T

‖M2 − p‖

We solve this using a numerical method.

At this stage, we can infer if bundling the lines of Q is profitable, as the ink poten-

tially saved is exactly the difference:

∑

(vj ,uj)∈Q

‖vj − uj‖ −





∑

p∈S

‖M1 − p‖+ ‖M1 −M2‖+
∑

p∈T

‖M2 − p‖





If this difference is positive, we know that we gain area by bundling.

If bundling is Q worthwhile, we recommend depicting each line (vi, ui) using a

Bézier spline with M1 and M2 as control points. See Step 4 in Figure 3, and Fig-

ure 1(c,e). Our experience is that by incorporating Bézier splines, the drawing is smoother

and more readable. Also, the readability of edge bundles is improved when each of them

is uniquely colored, as can be seen in Figure 1(c,e).

A possible problem when bundling edges is that we might lose the information

about which “source” is connected to which “target”. For example, in the final picture of

Figure 3, it is unclear whether A is connected to E or maybe to F , G, or H . We adopt a

simple rule to address this problem: crossing edges can never be bundled together. The

edges exit the bundle at the same order they entered it, thus avoiding any ambiguity

when each source is connected to a unique target.

Now, we turn to the problem of identifying the sets of edges to be bundled. We

pick the sets of edges such that, by bundling them, we minimize the amount of ink

used. Our choice is to use a bottom-up, agglomerative approach. The process starts

with multiple sets, each of which contains a single edge. Then, sets are merged as long

Function BundlingGain (Q1, Q2 ⊂ E)

% Return the ink gain by bundling two edge sets (negative value means no gain)

% The function Ink(S) returns total ink needed for most efficient drawing of S ⊂ E

if EdgeCrossing(Q1,Q2) then

return -1

else

return Ink(Q1) + Ink(Q2)− Ink(Q1 ∪Q2)
end if

end

Function AgglomerativeBundling (E = {e1, e2, . . . , em})
% Iteratively, grow edge bundles that improve drawing area utilization

sets← {{e1}, {e2}, . . . , {em}}
while profitable bundling is possible do

% Pick two sets generating most gain:

(Q1, Q2)← argmaxQ1,Q2∈sets BundlingGain(Q1, Q2)
sets← sets ∪ {Q1 ∪Q2} − {Q1, Q2}

end

return sets
end

Fig. 4. Agglomerative edge bundling algorithm

as the corresponding bundling improves drawing area utilization; see pseudocode is

given in Figure 4.

Concerning computational complexity, this algorithm is essentially a hierarchical

clustering algorithm performed on the edges, and therefore it has O(|E|2) time and

space complexity (counting “bundlingGain” calculations), according to Eppstein [5].

The practical situation, however, is better here. First, only a tiny fraction of edge pairs

are mergeable since, for most pairs, there is no gain from bundling or the edges cross.

Therefore, O(|E|2) space is unnecessary in practice, and we use a sparse data structure

holding only profitable edge pairs. Moreover, when bundling two sets Q1 and Q2, we

would consider for potential bundling with Q1∪Q2 only sets that could be bundled with

Q1 or Q2. Finally, the O(|E|2) time complexity needed for evaluating the bundling

gain of all possible edge pairs can be significantly alleviated if we initially consider

only bundles involving two nearby edges; other bundles can be considered later by

transitivity. Here, two edges e1, e2 are considered “nearby” if one of e1’s endpoints is

sufficiently close to one of e2’s endpoints in the given circular ordering.

5 Experiments

We evaluated the performance of our methods on the known benchmark set of Rome

graphs [2], which contains 11,534 real-life, sparse graphs with 10–109 nodes. In addi-

tion, we tested our algorithms on a set of pseudo-random graphs characterized by their

average degrees; all these graphs contain 100 nodes.

As a reference, we picked the CIRCULAR algorithm by Six and Tollis [17]. This

algorithm finds a circular ordering in two steps. The first step creates an initial ordering

based on the largest outerplanar subgraph. Then, the second step iteratively reduces

the number of crossings by carefully moving nodes. We used the publicly available

implementation circo, which is part of the Graphviz package [8].

Another circular ordering algorithm is that of Baur and Brandes [1]. They also ex-

plicitly address edge crossings using a two phase process. The reported numbers of

crossings are better – by up to 20% – compared with the aforementioned CIRCULAR

algorithm. We did not have an implementation of this algorithm, so no direct compari-

son was performed.

The quality of the drawings was assessed using two aesthetic criteria: number of

crossings and total used ink.1 The results are given in Tables 1 and 2.

The evaluated algorithms are coded in the tables as follows: C=CIRCULAR; M

= Median iteration followed by fine-tuning, as described in Section 2; MC = Median

iteration followed by fine-tuning and then by the second step of CIRCULAR.

No exterior routing Exterior routing

Name #graphs C M MC C M MC

Rome, 10–19 nodes 1407 2.61 3.19 2.11 0.16 0.15 0.09

Rome, 20–29 nodes 839 7.18 8.01 5.51 0.83 0.68 0.46

Rome, 30–39 nodes 2037 21.42 22.17 16.42 4.29 3.33 2.48

Rome, 40–49 nodes 1802 41.49 41.06 31.68 11 8.77 6.66

Rome, 50–59 nodes 1045 66.46 65.16 51.16 20.66 16.67 12.8

Rome, 60–69 nodes 1172 92.76 91.3 72.51 32.4 26.93 21.33

Rome, 70–79 nodes 1008 123.47 120.94 96.23 47.43 39.46 31.04

Rome, 80–89 nodes 788 167.29 161.84 130.41 69.84 58.53 46.73

Rome, 90–99 nodes 1296 209.12 205.64 165.4 92.64 80.24 64.28

Rome, 100–109 nodes 140 230.1 229.52 183.83 103.45 92.74 72.97

Random, avg. deg. 3 100 383.23 357.68 302.29 195.22 166.18 139.12

Random, avg. deg. 4 100 1337.68 1186.50 1048.19 838.42 714.08 627.06

Random, avg. deg. 5 100 2709.35 2489.69 2230.24 1858.20 1678.77 1487.14

Random, avg. deg. 6 100 4437.51 4252.31 3843.23 3192.80 3043.01 2719.80

Random, avg. deg. 7 100 6979.42 6843.71 6210.86 5216.34 5126.31 4594.56

Random, avg. deg. 8 100 9931.27 9808.96 8992.90 7646.76 7545.26 6865.73

Table 1. Comparing number of crossings across different circular ordering options, with and

without exterior edge routing

We begin with observations about the circular orderings. In terms of crossings mini-

mization, there is no marked difference between our method (M) and CIRCULAR (C)

for the Rome graphs, while M could produce fewer edge crossings than C for the ran-

dom graphs. As for the edge lengths (Table 2), M consistently achieves better results,

which is not surprising as CIRCULAR does not address edge lengths but crossings.

Since M does not directly deal with edge crossings, we tried to make it more “crossings

aware”, by integrating it with the second step of CIRCULAR, obtaining the method

coded by MC. As the table shows, MC is consistently the best performer in terms of

crossing minimization, outperforming both C and M.

So far, we have compared plain circular orderings. Interestingly, all differences, in

terms of number of crossings, are dwarfed by the effect of exterior routing (Section 3).

1 We prefer the term “total used ink” over the more common “total edge length”, since when

edge bundling is activated they are no longer equivalent.

No edge bundling Edge bundling

Name #graphs C M MC C M MC

Rome, 10–19 nodes 1407 12.94 12.34 12.33 10.33 10.11 10.11

Rome, 20–29 nodes 839 17.16 15.49 15.50 13.23 12.52 12.54

Rome, 30–39 nodes 2037 23.12 20.38 20.34 17.46 16.26 16.25

Rome, 40–49 nodes 1802 29.08 25.26 25.19 22.26 19.73 19.68

Rome, 50–59 nodes 1045 34.51 29.59 29.34 24.59 22.71 22.57

Rome, 60–69 nodes 1172 39.04 33.53 33.19 27.39 25.38 25.10

Rome, 70–79 nodes 1008 43.57 37.28 36.58 30.30 27.98 27.56

Rome, 80–89 nodes 788 49.39 42.16 41.33 33.62 31.02 30.58

Rome, 90–99 nodes 1296 53.99 46.21 45.14 36.31 33.63 33.03

Rome, 100–109 nodes 140 56.19 48.68 47.11 37.51 35.08 34.31

Random, avg. deg. 3 100 72.44 62.72 61.99 46.07 43.56 42.59

Random, avg. deg. 4 100 124.08 109.29 107.96 72.04 68.20 66.77

Random, avg. deg. 5 100 171.85 156.19 153.97 93.73 90.08 88.52

Random, avg. deg. 6 100 220.81 206.14 202.87 114.39 111.47 109.45

Random, avg. deg. 7 100 273.35 260.37 254.79 207.10 198.32 194.59

Random, avg. deg. 8 100 325.10 312.25 306.18 243.18 234.58 230.81

Table 2. Comparing total used ink (total length of edges) across different circular ordering op-

tions, with and without edge bundling

As can be seen in the right columns of Table 1, exterior routing is capable of eliminating

a significant portion of the edge crossings. Also, when exterior routing is activated, our

method (M) produces fewer crossings than CIRCULAR (C) even for the Rome graphs,

whereas the combined method – MC – is still superior. Apparently, our method can

better benefit from exterior routing because, by producing shorter edges, it allows more

non-crossing edges to be routed externally. In fact, for the Rome graphs, M allows an

external routing of 23% of the edges (on average, surprisingly uniform for all graph

sizes), while C allows external routing of 18% of the edges and MC routes 19% of the

edges externally.

We see that M has an advantage in reducing the total used ink. When allowing edge

bundling (Section 4), a further significant improvement in drawing area utilization is

achieved, as shown in the right columns of Table 2. Our experience shows that this

ink saving is helpful in conveying a clearer layout. Notice that a further reduction of

drawing density could be obtained by exterior routing, but it was not considered in

Table 2, as our intention is to isolate the effect of circular ordering and bundling on ink

usage.

Finally, as to running time, the average measured running time on the 100-node

graphs is around 1 second on a Pentium 4 machine. This is comparable with the run-

ning time of the CIRCULAR algorithm. Almost all running time is dedicated to the

computation of the circular ordering. The time needed for computing the edge bundling

is 50–200ms (depending on the number of edges), whereas the time for computing the

external edges is insignificant.

6 Summary

Circular layouts are a rather restrictive layout scheme, offering a simple and highly

regularized picture of the graph where nodes cannot be occluded. The limiting nature

of circular layouts makes it very important to capitalize on all available degrees of

freedom. In this work, we explored new ways for positioning nodes and routing edges in

order to maximize the readability of the layouts. In particular, the density of the drawing

is alleviated by shortening edge lengths, moving part of the edges to the exterior of the

circle, and bundling some edges together. In addition, shortening edges and exterior

routing significantly reduce the number of edge crossings.

References
1. M. Baur and U. Brandes, “Crossing Reduction in Circular Layouts”, Proc. Graph-Theoretic

Concepts in Computer-Science (WG ’04), 332-343, 2004.
2. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari and F. Vargiu, “An Experimental

Comparison of Four Graph Drawing Algorithms”, Comput. Geom. Theory Appl. 7, 303–325,

1997.
3. M. Dickerson, D. Eppstein, M. T. Goodrich and J. Meng, “Confluent drawings: Visualizing

Non-Planar Diagrams in a Planar Way”, Proc. Graph Drawing (GD’03), 1–12, 2003.
4. U. Doğrusöz, B. Madden and P. Madden, “Circular layout in the Graph Layout Toolkit”,

Proc. Graph Drawing (GD 96), 92–100, 2003, 1996
5. D. Eppstein, “Fast Hierarchical Clustering and Other Applications of Dynamic Closest

Pairs”, Journal of Experimental Algorithmics 5, 1–23, 2000.
6. M. K. Ganapathy and S. Lodha, “On Minimum Circular Arrangement”, Proc. 21st Annual

Symposium on Theoretical Computer Science (STACS’04), 394–405, 2004.
7. E. R. Gansner, Y. Koren and S. North, “Graph Drawing by Stress Majorization”, Proc. Graph

Drawing (GD’04), 239–250, 2004.
8. E. R. Gansner and S. North, “An Open Graph Visualization system and its Applications

to Software Engineering”, Software - Practice & Experience 30, 1203–1233, 2000. Also,

www.graphviz.org.
9. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP

Completeness, Freeman, 1979.
10. K. M. Hall, “An r-dimensional Quadratic Placement Algorithm”, Management Science 17,

219–229, 1970.
11. D. Holten and J. J. van Wijk, “Hierarchical Edge Bundles: Visualization of Adjacency Rela-

tions in Hierarchical Data”, Proc. IEEE Information Visualization (InfoVis’06), to appear.
12. G. Kar, B. Madden and R. S. Gilbert, “Heuristic Layout Algorithms for Network Manage-

ment Presentation Services”, IEEE Network 29–36, 1988.
13. M. Kaufmann and R. Wiese, “Maintaining the Mental Map for Circular Drawings”, Proc.

Graph Drawing (GD’02), 12–22, 2002.
14. V. Liberatore, “Multicast Scheduling for List Requests”, Proc. IEEE INFOCOM 2002, 1129–

1137, 2002.
15. S. Masuda, T. Kashiwabara, K. Nakajima and T. Fujisawa, “On the NP-Completeness of a

Computer Network Layout Problem”, Proc. IEEE International Symposium on Circuits and

Systems, 292–295, 1987.
16. F. J. Newbery, “Edge Concentration: A Method for Clustering Directed Graphs”, Proc. 2nd

Intl. Workshop Software Configuration Management, 76–85, 1989.
17. J. M. Six and I. G. Tollis, “Circular Drawings of Biconnected Graphs”, Proc. Algorithms

Engineering and Experimentation (ALENEX’99), 57–73, 1999.
18. J. M. Six and I. G. Tollis, “A Framework for Circular Drawings of Networks”, Proc. Graph

Drawing (GD’99), 107–116, 1999.
19. K. Sugiyama, S. Tagawa and M. Toda, “Methods for Visual Understanding of Hierarchical

Systems”, IEEE Trans. Systems, Man, and Cybernetics 11, 109–125, 1981.
20. A. Symeonidis and I. G. Tollis, “Visualization of Biological Information with Circular Draw-

ings”, Proc. Biological and Medical Data Analysis (ISBMDA’04), 468–478, 2004.
21. W. T. Tutte, “How to Draw a Graph”, Proc. London Mathematical Society 13, 743–768,

1963.

