
Editing Pictures with lefty

Eleftherios Koutso�os

96b (06-24-96)

Abstract

lefty is a two-view graphics editor for technical pictures. This editor has no hardwired knowl-
edge about speci�c picture layouts or editing operations. Each picture is described by a program
that contains functions to draw the picture and functions to perform editing operations that are
appropriate for the speci�c picture. Primitive user actions, like mouse and keyboard events, are
also bound to functions in this program. Besides the graphical view of the picture itself, the ed-
itor presents a textual view of the program that describes the picture. Programmability and the
two-view interface allow the editor to handle a variety of pictures, but are particularly useful for
pictures used in technical contexts, e.g., graphs and trees. Also, lefty can communicate with other
processes. This feature allows it to use existing tools to compute speci�c picture layouts and allows
external processes to use the editor as a front end to display their data structures graphically. The
�gure below shows a typical snapshot of lefty in use. The editor has been programmed to edit
delaunay triangulations. The window on the left shows the actual picture. The user can use the
mouse to insert or move cites and the triangulation is kept up to date by the editor (which uses an
external process to compute the triangulation). The window on the right shows the program view
of the picture.

Chapter 1. Introduction

lefty is an editor designed to handle technical pictures. Technical pictures are pictures used in
technical contexts, e.g. program call graphs, binary search trees, fractals, and networks. Although
there are many di�erent types of technical pictures, they all share several properties.

One such property is accuracy. Since the reason for drawing a technical picture is to display
some abstract object in a way that is easy to understand, it is very important that the positions,
sizes, and other graphical attributes of the graphical primitives in a picture follow strict rules.
Figure 1.1 shows two technical pictures. The fractal in Figure 1.1a consists of equal-size line
segments arranged in a path that is computed using a simple recursive function. The binary tree
in Figure 1.1b consists of nodes and edges. All nodes of the same depth are drawn along the same
horizontal line and parent nodes are centered over their children nodes.

H I

D E

B

N O

J K

F

L M

G

C

A

(a) (b)

Figure 1.1: Two technical pictures

Accuracy, however, is just the end result of the more fundamental property structure. In
Figure 1.1b, the hierarchy of the tree constrains the graphical representation. F and G are both
children of C; if C is moved to the right, F and G must also move to the right to preserve the
symmetry. Other parts of the tree also have to move.

Most graphics editors provide ways for drawing pictures accurately, but very few provide ways
to maintain the consistency of technical pictures. If the user moves C to the right, the editor
could move F and G automatically. Most existing editors, however, do not provide this kind of
functionality. lefty, on the other hand, was designed with this kind of functionality in mind.

lefty implements a procedural programming language. This language can be used to specify all
aspects of picture editing: how to draw the picture, how to edit it, and how to bind user actions to
editing operations. Essentially, a picture is treated as an object that contains methods for operating

1

on it. For example, for the tree in Figure 1.1b this program would include functions to draw nodes
and edges, functions to insert nodes and edges, and �nally functions to bind mouse actions to
editing operations. If the tree is supposed to have some speci�c semantics then the functions that
insert nodes and edges may be modi�ed to perform consistency checks. For example, the function
for inserting edges may check if adding an edge would violate the semantics of the picture and if so
print an error message. By having a language, lefty can be programmed to handle many di�erent
kinds of pictures, and at the same time provide in-depth support for each kind of picture.

A picture in lefty is shown in two ways. One view is the usual \what you see is what you get
view" (WYSIWYG). The other view is a textual view of the program that controls the picture.
Users can perform operations on either view. The WYSIWYG view is more intuitive, while the
program view is more functional.

Another way in which lefty di�ers from other editors is in the way it can be used. lefty can
be used as a standalone editor, to prepare pictures for printing, but it can also communicate with
other processes. This allows lefty to act as a graphical front end for other processes. In this mode
a picture becomes a user interface object. For example, as some system changes state, its picture
may change, but at the same time the system can be changed by changing the picture. lefty's
programmability makes building graphical front ends for other tools easy. In many cases, these
front ends perform better than tools that implement all the functionality in a single program.

2

Chapter 2. Overview

This section presents an overview of the editor. We use an example that demonstrates how pictures
are described and built using lefty. This example is too simple to take advantage of the editor's
programmability because the picture has no structure, but it demonstrates the basic picture-design
principles.

The picture in this example is a collection of rectangles of various sizes positioned randomly.
The complete program for this program can be found in Appendix C.

Picture descriptions consist of two parts:

data structures that hold information about the picture. For this example, the data structures
tell how many boxes are in the picture and their locations and sizes.

functions that implement operations on the data structures. This example has functions to
insert, delete, move, and draw boxes.

Location and size data are stored in objarray, which is an array of key-value pairs, and the number
of boxes is given by objnum. Figure 2.1 shows a snapshot of the data structures for two boxes.
Each element of objarray speci�es the origin and corner of a box in �elds rect[0] and rect[1]

respectively. Section 3.1 describes the lefty language in more detail. Figure 2.2 is the WYSIWYG
view.

objnum = 2;

objarray = [

0 = [

'id' = 0;

'rect' = [

0 = ['x' = 50; 'y' = 50;]; 1 = ['x' = 200; 'y' = 200;];

];

];

1 = [

'id' = 1;

'rect' = [

0 = ['x' = 150; 'y' = 250;]; 1 = ['x' = 350; 'y' = 450;];

];

];

];

Figure 2.1: A snapshot of the data structure

We need functions to draw the picture, to change it, and to bind user events to changes to the
picture. drawbox and redrawboxes in Figure 2.3 do the actual drawing; drawbox draws a single
box, and redrawboxes clears the display and draws all the boxes. box does the actual rendering;
it is a built-in function that draws a rectangle. Built-in functions provide access to window and
operating system resources. They are described in Section 3.5. canvas is the id for the drawing
area. In this example there is only one drawing area and its id is assigned to the global variable
canvas.

3

Figure 2.2: The WYSIWYG view of the picture

Figure 2.4 shows various editing functions. new adds a new box to objarray. reshape changes
the shape of an existing box, and move moves a box. pointadd is a function that adds two points
and returns the resulting point. remove is a built-in function that removes array elements; here it
removes entry objnum - 1 from objarray.

Figure 2.5 shows some of the functions that bind user events to editing operations. leftdown is
called when the user presses the left mouse button. In this picture, if the user presses the left button
over white space (not inside any box) a new|zero size|box is created and the drawing mode is
set to xor. As the user moves the mouse while holding the left button down, leftmove is called.
leftmove creates a rubberband e�ect, by reshaping the box so that the corner of the box follows
the mouse. When the user releases the left button, leftup is called. leftup sets the drawing
mode back to normal (mode src). Functions middledown, middlemove, and middleup, allow the

drawbox = function (obj, color) {

box (canvas, obj, obj.rect, ['color' = color;]);

};

redrawboxes = function () {

local i;

clear (canvas);

for (i = 0; i < objnum; i = i + 1)

drawbox (objarray[i], 1);

};

Figure 2.3: Drawing functions

4

new = function (rect) {

objarray[objnum] = [

'rect' = rect;

'id' = objnum;

];

objnum = objnum + 1;

return objarray[objnum - 1];

};

reshape = function (obj, rect) {

obj.rect = rect;

return obj;

};

move = function (obj, p) {

obj.rect[0] = pointadd (obj.rect[0], p);

obj.rect[1] = pointadd (obj.rect[1], p);

return obj;

};

delete = function (obj) {

if (obj.id ~= objnum - 1) {

objarray[obj.id] = objarray[objnum - 1];

objarray[obj.id].id = obj.id;

}

remove (objnum - 1, objarray);

objnum = objnum - 1;

};

Figure 2.4: Editing functions

user to grab an existing box and move it. Finally, rightup deletes a box. The names of these
functions are special. When a mouse or keyboard event occurs, lefty searches its data structures
for a function that corresponds to the event. If such a function is de�ned, lefty calls it with one
argument, data. data is a table that contains information about the user event. data.pos is the
position of the mouse at the time of the event. data.ppos is present only for move or up events
and it holds the position of the mouse at the time of the corresponding down event. data.obj

is the object that the user \selected". In this example, each rectangle on the screen is associated
with an entry in objarray. This is done by drawbox which calls box with the corresponding entry
in objarray as the second argument. When the user presses a mouse button over a rectangle,
lefty locates that rectangle and from that locates the corresponding object. setgattr is a built-in
function that changes the graphics state of a drawing area. clearpick is a built-in function that
makes its object argument unselectable from the WYSIWYG view, by removing it from the data
structure used by lefty to locate graphical primitives.

The user can edit the picture from either the program or the WYSIWYG view. From the
WYSIWYG view, the user can create a new box by pressing the left button, then|while holding
the button down|moving the mouse to another location and releasing the button. From the

5

leftdown = function (data) {

if (data.obj ~= null)

return;

leftbox = new (rectof (data.pos, data.pos));

drawbox (leftbox, 1);

setgfxattr (canvas, ['mode' = 'xor';]);

};

leftmove = function (data) {

if (~leftbox)

return;

drawbox (leftbox, 1);

clearpick (canvas, leftbox);

reshape (leftbox, rectof (data.ppos, data.pos));

drawbox (leftbox, 1);

};

leftup = function (data) {

if (~leftbox)

return;

drawbox (leftbox, 1);

clearpick (canvas, leftbox);

reshape (leftbox, rectof (data.ppos, data.pos));

setgfxattr (canvas, ['mode' = 'src';]);

drawbox (leftbox, 1);

remove ('leftbox');

};

Figure 2.5: User Interface functions

program view, the user can perform similar operations by entering expressions in the editor's
language. For example, the user can create a new box by typing the following commands:

newbox = new ([0 = ['x' = 250; 'y' = 120;]; 1 = ['x' = 390; 'y' = 240;];]);

drawbox (newbox, 1);

The program view shows the data structures and functions of the current program. By default,
entries in this view are shown abstracted, with each entry taking up a single line. The user can
selectively expand individual entries to their full size.

Figure 2.7 shows the WYSIWYG view after moving one of the boxes and Figure 2.6 shows the
corresponding data structures.

Generating postscript output is easy. canvas can be set to an id corresponding to a �le. In this
case, built-ins such as box, will append the appropriate postscript expressions to this �le. Function
dops, shown in Figure 2.8 creates a postscript �le, sets canvas to the id of the �le, draws the
picture, closes the �le and restores canvas to its original value.

6

objnum = 3;

objarray = [

0 = [

'id' = 0;

'rect' = [

0 = ['x' = 50; 'y' = 50;]; 1 = ['x' = 200; 'y' = 200;];

];

];

1 = [

'id' = 1;

'rect' = [

0 = ['x' = 150; 'y' = 250;]; 1 = ['x' = 350; 'y' = 450;];

];

];

2 = [

'id' = 2;

'rect' = [

0 = ['x' = 250; 'y' = 120;]; 1 = ['x' = 390; 'y' = 240;];

];

];

];

Figure 2.6: A snapshot of the data structure after editing the picture

Figure 2.7: The WYSIWYG view of the picture after editing

7

dops = function () {

local s;

s = ['x' = 8 * 300; 'y' = 10.5 * 300;];

canvas = createwidget (-1, ['type' = 'ps'; 'size' = s;]);

setwidgetattr (canvas, ['window' = wrect;]);

redraw (canvas);

destroywidget (canvas);

canvas = defcanvas;

};

Figure 2.8: Function for generating postscript output

8

Chapter 3. System Components

This section presents the components of the editor.

3.1 The Language

Since lefty is interactive, the language is designed to allow for fast parsing and execution. The
language was inspired by EZ [FH85]. Appendix B speci�es the language in detail.

The language supports scalars and tables. A scalar is a number or a character string of arbitrary
length. A table is a one-dimensional array indexed by numbers or strings.

For example, objarray in Figure 2.1 is a two-entry table indexed by 0 and 1. Each of these
entries is a table with entries for the center and the size of each box and an id for each box.

Variables are either global, i.e., part of a global name table, or local to a function. Expressions
may or may not return a value. For example, a + b does not return a value when either a or b are
not de�ned.

The smallest program unit is the expression. User actions on the WYSIWYG view result in
the execution of expressions. User-typed text in the program view is a sequence of expressions.
Each user action results in the immediate evaluation of an expression. For example, if the user
enters num = sqrt (4); in the program view, sqrt is called and its return value, 2, is assigned to
num. Once executed, the input is discarded; the only change in the program's state is that it now
contains num. To specify code that is meant to be executed later, the user must de�ne a function,
e.g.,

afunction = function (n) {

num = sqrt (n);

};

\Executing" a function declaration adds the name of the function to the global name table. Calling
afunction assigns a value to num, e.g., afunction (4); assigns 2 to num.

Assignment is done either by value (scalars), or by reference (tables). For example, after the se-
quence a = 1; b = a;, a and b point to two di�erent values, while the sequence a = []; b = a;

results in both a and b pointing to the same table. Functions are stored and treated like scalars.

3.2 The Program View

The program view is a textual representation of the picture state. It displays the name and value
of each global object.

The textual representation can be long, so the editor presents an abbreviated view by default:
each name, value pair is displayed on a line. Figure 3.1a shows a few of the entries in the program
view for the picture in Figure 2.2. Only the value for objnum is displayed, as it can �t in a single
line. Other variables have an abstract representation, which indicates whether they are functions
or tables.

For a more detailed view of an object, the user clicks on the line describing the object. For
example, clicking on the line for objarray causes the editor to expand it, as shown in Figure 3.1b,

9

to show that objarray has two entries indexed by 0 and 1. Clicking on the 0 entry of objarray
causes the editor to expand that entry as shown in Figure 3.1c. Entry 1 remains the same, but
entry 0 is expanded. Function entries behave similarly: clicking on a function displays the function's
body. Clicking on reshape, for example, results in the display shown in Figure 3.1d.

Clicking on an expanded entry replaces that entry with its abstracted version.
If an entry points to the same value as another entry, the second entry is shown di�erently.

Rather than showing the same value twice, the editor shows the duplication. For example, if we
execute zarray=objarray;, zarray will be shown as in Figure 3.1d. This display semantic makes
it clear how much unique information is available.

Unlike in the WYSIWYG view, where changes are controlled by the program that describes
the picture, the user can do anything in the program view, including getting the program into
an inconsistent state. All the functions and tables are visible and can be edited. This exibility
is necessary, since a conceptual change to the program or the data usually requires a sequence of
modi�cations to the text of the program. Although the sequence of modi�cations leaves the editor in
a consistent state, individual modi�cations can put the editor in an inconsistent state temporarily.
For example, the user can add a box to Figure 2.2 by typing in the sequence of commands executed
by function new in Figure 2.4. After the user has typed in the assignment for objarray[objnum],
the program is inconsistent: objarray has three entries, but the value for objnum is still 2. The
program becomes consistent after the user types in the command to increment objnum.

3.3 The WYSIWYG View

The WYSIWYG view is the graphical representation of the picture. The program that describes
a picture controls the WYSIWYG view; all the objects are drawn by the program, and all user
actions are handled by the program. The WYSIWYG view can consist of one or more widgets,
such as drawing areas, buttons, lists, text areas, and scrollable widgets.

Widgets can be manipulated using built-in functions. When a new widget is created, lefty

adds an entry to a global table called widgets. Each of these entries is a table that can be used
to customize the behavior of the widget. When the user generates an event, e.g. clicks a mouse
button, lefty searches the corresponding entry in widgets for the appropriate callback function. If
the function cannot be found in that table, lefty then searches for it in the global namespace.

The most interesting type of widget in lefty is the drawing area. Drawing inside such a widget
is handled by a set of built-in functions. The supported graphical primitives are lines, polygons,
splinegons, elliptic arcs, and text. Each drawing area maintains its own graphics state. The built-in
functions and state variables are described in Section 3.5

When an event occurs inside a drawing area, for example, a mouse button is pressed or released,
the editor checks if a function corresponding to this event exists. The possibilities are:

leftdown leftmove leftup

middledown middlemove middleup

rightdown rightmove rightup

keydown keyup

There is no restriction on what these functions do. The programmer must de�ne them as appro-
priate for the current picture. lefty searches for these functions �rst in the drawing area's entry in

10

widgets, then in the global namespace. If a function is found, it is called with a single argument.
This argument is a table that contains information about the event. It has the following �elds.

obj the object that the user selected with this event, or null if no such object could be found

pos a table with two entries, x and y, that hold the mouse coordinates at the time of this
event

pobj (only for move and up events) the object selected by the preceding down event.

ppos (only for move and up events) the mouse coordinates at the time of the preceding down

event

widget the widget id of the drawing area where this event occurred

key (only for key events) the ascii character of the key

Determining the selected object at a button press or release has two phases. The editor deter-
mines if the mouse coordinates select a graphical primitive. Closed shapes, for example, boxes and
ellipses, are selected if the mouse coordinates lie inside the shape. If such a primitive can be found,
the editor �nds the lefty data object associated with it.

Finding the selected graphical primitive is straightforward. The editor maintains a data struc-
ture of all the graphical primitives in the WYSIWYG view. When an event is received, the co-
ordinates are used to search through this data structure for the selected primitive. The only
complication is when two or more primitives overlap. In the box example in Section 2, boxes could
overlap. The editor does not resolve these kinds of ambiguities. One solution would be to allow the
user to rotate through all the objects that could potentially be selected. The editor does provide a
way to resolve ambiguities created by design, such as when an object is drawn using more than one
graphical primitives. In the tree �gure in Section 1, a tree node is drawn as a rectangle enclosing
a label.

Finding the data object that corresponds to the selected primitive is slightly more complex. The
data object must be speci�ed as an argument to the rendering primitive. All rendering functions
take as their second argument the object to associate with the primitive they draw. This argument
can also be null, which e�ectively makes the primitive unselectable. For the tree example, the
text label of a node could be associated with null and that would leave the node's box as the only
selectable primitive occupying that area of the display. The box would have to be associated with
the table that represents the corresponding node of the tree. The mapping between objects and
graphical primitives is manipulated with two functions:

clearpick (canvas, object)
setpick (canvas, object, rectangle)

clearpick removes object from the mapping, and setpick associates the rectangular area rectangle
with object. Finally, clearing the WYSIWYG view clears the mapping.

When a drawing area is resized, or when its window is redrawn, lefty searches for a function
called redraw. If such a function is found in widgets or in the global namespace, it is called with
a table as an argument. This table contains an entry widget which is the widget id of the drawing
area.

11

The label widget can display a piece of text in its rectangular area. It provides a subset of the
user-interface functions provided by the drawing area; it provides all the up and down functions
mentioned above, but does not provide the move functions. The table passed as argument to these
functions contains the widget entry and|for the keyup and keydown functions|the key entry.

The button widget provides a single function, pressed. It is called when the user clicks on the
button. If such a function is found it is called with just one entry, widget.

When the user presses CR in an input text widget, lefty looks for a function called oneline.
This function, if found, is called with two arguments, widget and text. text contains the line of
text that the user just entered.

For array widgets, lefty tries to call a function named resize whenever their size changes (either
through user actions, or program control). This function is called with two arguments, widget and
size. size is an (x,y) table containing the new size of the widget. This function is expected to
return an array containing new sizes for all of the widget's children. This array must be indexed
by the widget ids of the children, and each element must be an (x,y) table containing the size of a
child.

lefty can monitor open �le descriptors. Built-in function monitor takes as an argument the id of
an input channel (generated by openio), and adds it to the list of �le descriptors being monitored.
When there is something to read from that �le descriptor, lefty searches the global namespace for
a function called monitorfile. If such a function is found, it is called with a table as an argument.
This table contains an entry fd which is the �le descriptor that is ready for reading.

Finally, when there are no X or �le I/O events to handle, lefty can optionally execute a function
called idle. This feature can be turned on or o� using the idlerun built-in.

3.4 Inter-process Communication

lefty provides built-ins for communicating with other processes. This capability can be used in
several ways.

Purely for output. A process can use the editor to display some data structures; the process
does not need any code for graphical layout.

For both input and output. The editor can be used to specify the input and to display the
result of some processing of that input. Debugging is an example; instead of printing data
structures as text or writing code to draw them, the process being debugged simply connects
to the editing server and sends the data structures to the server for display.

As an extension to the editor itself. There are tools displaying trees [TdBB88], DAGs
[GNV88], delaunay triangulations [GS85], and VLSI layouts [Uni85]. These tools are usually
large software packages, and duplicating their functionality in the editor is a major undertak-
ing. Instead, the editor communicates with these tools as separate processes. Whenever some
aspect of a layout needs to be updated, the editor sends a message asking for instructions on
how to perform the update to the appropriate process.

lefty communicates with other processes by exchanging ASCII strings. This allows lefty to
communicate with many existing tools, without having to modify these tools at all. For example,
the layout for the tree in Figure 1.1b is generated by a call to complayout. This function does all

12

the calculations. If the layout were to be generated by a separate process this function could be
rewritten as follows.

complayout = function () {

...

writeline (treefd, 'compute layout');

while ((s = readline (treefd)) ~= '') {

t = split (s, ' ');

nodearray[ston (t[0])] = ['x' = ston (t[0]); 'y' = ston (t[0]);];

}

...

};

complayout sends a message to the external process, using writeline, requesting a new layout.
The while loop reads back the response from the process. Each line would consist of 3 numbers:
the id of a node and its x and y coordinates. The process must send an empty line at the end of
the transmission. treefd is the �le descriptor for communicating with the other process.

The response from a process can also be a lefty expression. The while loop above could be
replaced with the following loop.

complayout = function () {

...

while ((s = readline (treefd)) ~= '')

run (s);

...

};

run is a built-in. It parses and execute the lefty expression speci�ed by the string s. A sample
string could be nodearray[i].p = ['x' = 10; 'y' = 20;];.

This form of remote procedure call gives processes access to lefty functions and data structures
and should help minimize the amount of work needed to interface a process with lefty.

The technique of communicating by sending programs has been used in several other systems,
most notably in window systems [PLR85, SUN88].

3.5 Built-in Functions

lefty built-ins can be used to perform window system / graphics operations and to access various
system resources such as �les. Built-ins di�er from functions written in lefty's language in that
they can take a variable number of arguments. Built-in functions that are not supposed to return
a value as part of their speci�cation, return 1 when they succeed and nothing when they fail. This
makes it possible to check whether a built-in performed its intended function with an if-statement.

if (~setwidgetattr (wid, ['text' = 'some text';]))

echo ('setwidgetattr failed');

Built-ins that are supposed to return speci�c values, also return nothing to indicate failure.

13

Widget Functions

widgetid = createwidget (parentid, attr)
setwidgetattr (widgetid, attr)
attr = getwidgetattr (widgetid, keys)
destroywidget (widgetid)

These functions are used to create, modify, and destroy widgets. createwidget creates a new
widget and returns its id. This id is a small integer. createwidget creates a new table, indexed
by widgetid, under the widgets global table. parentid is the id of the parent widget. attr is a
table of attributes, such as type, size, name, etc. Attribute type must be speci�ed, but if some
other attributes are not set, default values are used instead. setwidgetattr sets one or more
attributes for the speci�ed widget (except for type). getwidgetattr returns the current values of
the attributes speci�ed by keys. keys is an indexed array of attribute names. For example, if keys
is set to [0 = 'name'; 1 = 'size';], the returned attr table will contain two entries, ['name'
= ...; 'size' = ...;]. destroywidget destroys the speci�ed widget and any children that it
might have.

Tables 3.1 and 3.2 show the available widgets.

Graphics Functions

clear (canvasid)
clearpick (canvasid, object)
setpick (canvasid, object, rect)

clear clears the drawing area whose id is canvasid and the table that contains the mapping between
data objects and graphical objects. clearpick removes object from the mapping table, and setpick
maps the rectangular area speci�ed by rect to object.

item = displaymenu (widgetid, menu)

displaymenu pops up the menu speci�ed by menu inside the widget speci�ed by widgetid (which
must be either a canvas or a label widget). menu must be a table of number-string pairs. When the
user selects one of the string entries displaymenu returns the number associated with that string.
If the user dismisses the menu, -1 is returned.

reply = ask (prompt [, type, args])

Prompts the user for information; it displays the prompt string in a dialog box and waits for the
user to type or select a reply, which is returned as the value of ask. If type is the string "file", the
dialog box shows the contents of the directory speci�ed in args. If type is "choice", args must be
a string of the form "<choice a>|<choice b>|...". Each choice string appears as a button that
the user can click to select. If type is string, the dialog box has a text �eld that the user can type
in. args in this case is the initial value of the text �eld. Finally, if type is not speci�ed, "string"
is assumed.

setgfxattr (canvasid, attr)
attr = getgfxattr (canvasid, keys)

14

setgfxattr sets attributes in the graphics state. Each drawing area has its own state variables.
setgfxattr sets these attributes permanently. These attributes can also be set on a per rendering
call basis. getgfxattr returns the current values of the attributes speci�ed by keys. keys is an
indexed array of attribute names. For example, if keys is set to [0 = 'mode'; 1 = 'width';],
the returned attr table will contain two entries, ['mode' = ...; 'width' = ...;].

The graphics state consists of the variables shown in Table 3.3.

arrow (canvasid, object, p1, p2 [, attr])
line (canvasid, object, p1, p2 [, attr])
box (canvasid, object, rect [, attr])
polygon (canvasid, object, pointarray [, attr])
splinegon (canvasid, object, pointarray [, attr])
arc (canvasid, object, center, size [, attr])
text (canvasid, object, pos, string, fontname, fontsize, just [,attr])
size = textsize (canvasid, object, fontname, fontsize)

The �nal argument in most of these functions can be used to change the graphics state for the
execution of that function. splinegon draws a piecewise bezier spline curve. fontname must be
an X font name or a postscript font name. For ISO style font names, if the name contains the
sequence %d, this sequence will be replaced by the appropriate font size. just is a two letter string
that controls the justi�cation of the string. The �rst letter may be l, c, or r for left, center, or
right justi�ed strings. The second letter speci�es the vertical justi�cation and can be one of u, c,
d.

Bitmap Functions

bitmapid = createbitmap (widgetid, size)
destroybitmap (bitmapid)
bitmapid = readbitmap (widgetid, �leid)
writebitmap (�leid, bitmapid)
bitblt (canvasid, object, point, origin, bitmapid, mode)

These functions are used to create, modify, and destroy bitmaps. createbitmap creates a new
bitmap and returns its id. This id is a small integer. createbitmap creates a new table, indexed
by bitmapid, under the bitmaps global table. widgetid is the id of the canvas widget associated with
the bitmap. A bitmap can only be displayed in its associated canvas. size is the size of the bitmap.
destroybitmap destroys the speci�ed bitmap. readbitmap reads a bitmap from �le descriptor
�leid and returns a new bitmap id. The bitmap is assumed to be in PPM format. savebitmap

writes the speci�ed bitmap to �le descriptor �leid. bitblt copies pixels between canvas canvasid
and bitmap bitmapid. If mode is 'c2b' pixels are copied from the canvas to the bitmap. If mode is
'b2c' pixels are copied from the bitmap to the canvas. Pixels are copied from the source (bitmap
or canvas) starting at point point to the destination starting at the origin of the rect rectangle. The
size of the rectangle speci�es the amount of pixels to copy.

Bitmap are scaled when copied to / from canvases. For example, if the canvas window to
viewport ratio is 2.0, a bitmap drawn in the canvas will be scaled to 0.5 of its size.

15

Input / Output functions

id = openio (type, name, mode [, format])
closeio (id [, ag])
string = readline (id)
string = read (id)
writeline (id)
table = readgraph (id)
writegraph (id, table, ag)
table = parsegraphlabel (label, rects)

These functions handle input and output for a variety of connections, such as regular �les, pipes,
and sockets. type is a string whose value can be one of 'file', 'pipe', 'socket', or 'cs'. For
regular �les, �le name is opened for reading or writing, depending on mode. mode can be one of
'r', 'w', or 'w+'. For pipes and sockets, name is the name of an executable. If the name does not
begin with /, or ., the executable is searched, �rst in the path de�ned by the environment variable
LEFTYPATH, then in PATH. Finally, if format is speci�ed, it customizes the way an executable is
invoked. In format, a % followed by a letter speci�es a formatting directive. The following directives
are currently recognized.

%e the full path name for the executable.

%i the input �le descriptor (for pipes).

%o the output �le descriptor (for pipes).

%h the hostname (for sockets).

%p the port number (for sockets).

An arbitrary shell command can be executed by calling openio with name set to "ksh" (or any
other shell) and format set to concat ('%e -c "', cmd, '"'), where cmd is the shell command.
For sockets, lefty creates an internet socket, starts up the executable, then waits for the executable
to connect to that socket. The executable must try to connect to the host and port speci�ed by %h

and %p. 'cs' can be used to establish a libcs-style connection. name in this case is the libcs name
for a service. The optional flag parameter can be set to "kill" to make lefty send the kill signal
to the child process (if such exists) after it has closed the �le descriptor. readline reads a full line
and returns it (stripping the newline character). readgraph reads a graph in dot's language and
returns it as a table. writegraph writes out the graph table. If ag is set to 1 lefty will attach extra
attributes to edges to help identify them when this graph is read back in. This is used when lefty

communicates with dot. parsegraphlabel takes a dot-style record label and the corresponding
string of coordinates for the record �elds and returns a hierachical table. Each entry in this table
contains either the text and coordinates of a �eld, or a sub-table of �elds.

Math Functions

value = atan (y, x)
value = cos (angle)
value = sin (angle)

16

value = sqrt (number)
value = random (number)
integer = toint (number)

angle is assumed to be in degrees. toint truncates the decimal part of number.

Miscellaneous Functions

dump (...)
echo (arg1, ...)

echo prints out each arguments by appending them one after the other in the same line. echo does
not handle tables or functions. dump prints its arguments separated by newlines. It can handle any
type of lefty object. If dump is called with no arguments, it prints the entire namespace.

object2 = copy (object1)
remove (key [, table])
size = tablesize (table)
size = strlen (string)
table = split (string, delimiter)
string = concat (arg1 [, ...])
string = ntos (number)
number = ston (string)
string = quote (scalar [, qset [, qchar]])

copy makes a complete copy of object1. This is useful for assigning tables by value. remove removes
key, either from table, or from the global namespace. tablesize returns the number of entries in a
table. strlen returns the number of characters in string. split splits string in words and returns
a table (indexed from 0 and up), where each entry is a word. delimiter is a one character string
that is used to break string into words. Each occurance of delimiter separates two words. The only
exception is when delimiter is the space character; all leading and trailing spaces are ignored and
multiple spaces are treated as a single space. concat concatenates all its arguments into one string.
ntos converts a number to a string. ston converts a string to a number. quote returns a string
representation of the input scalar. When a character in scalar is in the qset string it is escaped
by prepending the backquote character. If qset is not speci�ed, the default '" is used. If qchar is
speci�ed, a qchar is added at the beginning and the end of the output string.

load (string)
run (string)
exit ()

load parses and executes lefty statements from the �le speci�ed by string. If the �le does not start
with / or ., it is searched in the path speci�ed by the environment variable LEFTYPATH. run parses
and executes the lefty statements in string. exit quits the editor.

txtview (mode)

txtview turns the program view on or o�. mode can be one of 'on' or 'off'.

monitor (�leid, mode)

17

monitor turns on or o� the monitoring of a �le for input. mode can be one of 'on' or 'off'. �leid
is an id returned from openio. When a �le descriptor becomes ready for reading, lefty calls the
monitorfile callback.

idlerun (mode)

idlerun can be used to control what lefty does when there are no events to handle. mode can
be one of 'on' or 'off'. The default mode if 'off'. Setting mode to 'on', instructs lefty to
keep running the idle callback unless there are X or �le events to handle. Setting mode to 'off',
instructs lefty to just block waiting for events to handle.

sleep (useconds)
useconds = time ()

sleep pauses execution for useconds microseconds. time returns the time of day in microseconds.

system (string)

system executes string as a shell command. It waits until the command �nishes.

value = getenv (name)
putenv (name, value)

getenv returns the value associated with the environment variable name. putenv sets the value for
the environment variable name to value value. Appendix A describes the lefty-speci�c environment
variables.

18

'delete' = function (...) { ... }; 'delete' = function (...) { ... };

'drawbox' = function (...) { ... }; 'drawbox' = function (...) { ... };

'leftdown' = function (...) { ... }; 'leftdown' = function (...) { ... };

'leftmove' = function (...) { ... }; 'leftmove' = function (...) { ... };

'leftup' = function (...) { ... }; 'leftup' = function (...) { ... };

'move' = function (...) { ... }; 'move' = function (...) { ... };

'new' = function (...) { ... }; 'new' = function (...) { ... };

'objarray' = [...]; 'objarray' = [

'objnum' = 2; 0 = [...];

'redraw' = function (...) { ... }; 1 = [...];

'reshape' = function (...) { ... };];

'objnum' = 2;

'redraw' = function (...) { ... };

'reshape' = function (...) { ... };

(a) All entries closed (b) Opening entry objarray

'delete' = function (...) { ... }; 'delete' = function (...) { ... };

'drawbox' = function (...) { ... }; 'drawbox' = function (...) { ... };

'leftdown' = function (...) { ... }; 'leftdown' = function (...) { ... };

'leftmove' = function (...) { ... }; 'leftmove' = function (...) { ... };

'leftup' = function (...) { ... }; 'leftup' = function (...) { ... };

'move' = function (...) { ... }; 'move' = function (...) { ... };

'new' = function (...) { ... }; 'new' = function (...) { ... };

'objarray' = ['objarray' = [

0 = [0 = [

'id' = 0; 'id' = 0;

'rect' = [...]; 'rect' = [...];

];];

1 = [...]; 1 = [...];

];];

'objnum' = 2; 'objnum' = 2;

'redraw' = function (...) { ... }; 'redraw' = function (...) { ... };

'reshape' = function (...) { ... }; 'reshape' = function (obj, rect) {

obj.rect = rect;

return obj;

};

'zarray' = objarray;

(c) Opening entry objarray[0] (d) Opening entry reshape

Figure 3.1: Various levels of abstraction on the program view

19

Type Attributes Attr. type Description

view origin

size

name

zorder

table of (x, y)
table of (x, y)
string
string

A top level window. It may contain exactly
one child. zorder can be used to push /
pop the view (values "top", "bottom").

text size

borderwidth

text

mode

appendtext

table of (x, y)
integer
string
string
string

A widget that can display (and optionally
edit) text. mode can be one of "oneline",
"input", or "output". For mode line,
lefty tries to execute the func callback
whenever CR is pressed. appendtext ap-
pends a string to the string already dis-
played by the widget.

scroll size

borderwidth

childcenter

mode

table of (x, y)
integer
table of (x, y)
string

A widget that can contain a|potentially
larger|child widget and let the user scroll
through it. childcentermay not be spec-
i�ed until the scroll widget has a child wid-
get. childcenter aligns the child so that
the child's childcenter coordinates are at
the center of the scroll widget. mode can be
set to "forcebars" to make scrollbars ap-
pear even when the child widget is small
enough to �t inside the scroll widget.

array size

borderwidth

mode

layout

table of (x, y)
integer
string
string

A widget that can take a list of children
widgets and display them either as a hor-
izontal or a vertical list. mode can be one
of "horizontal", or "vertical". layout
controls whether the widget rearranges its
children every time there is some change.
If set to "off" the widget will stop rear-
ranging its children until layout is set to
"on" again.

Table 3.1: Widget types part 1

20

Type Attributes Attr. type Description

button size

borderwidth

text

table of (x, y)
integer
string

A widget that can display a text label and
execute the callback pressed when it is
selected.

canvas size

borderwidth

cursor

color

viewport

window

table of (x, y)
integer
string
array of (r, g, b)
and strings
table of (x, y)
2 tables of (x, y)

A drawing area. cursor must be the
name of a cursor bitmap, e.g. "watch"

or "default". color is an array of RGB
values and color names. Colors 0 and 1

are prede�ned to be the background and
foreground colors. viewport sets the size
in pixels of the drawing area. window sets
the mapping between drawing coordinates
and pixel coordinates. The default value
for window is (0,0) - (1,1). The origin is at
the lower left side.

label size

borderwidth

text

table of (x, y)
integer
string

A widget that can display a text label and
execute several callbacks depending on the
mouse or keyboard buttons used.

ps origin

size

name

mode

color

window

table of (x, y)
table of (x, y)
string
string
array of (r, g, b)
2 tables of (x, y)

A postscript �le. name is the �le name.
mode can be "landscape".

Table 3.2: Widget types part 2

Name Type Range Default Description

color integer 0-255 1 The current drawing color.
width integer >= 0 0 The current line width.
mode string 'src'

'xor'

'src' The current drawing mode.

fill string 'on'

'off

'off' Whether polygons and arcs should be drawn
�lled or outlined.

style string 'solid'

'dashed'

'dotted'

'solid' The current line style.

Table 3.3: Graphics state

21

Chapter 4. Examples

4.1 Fractals

This is an example of a type of �gure easily described in a procedural language. Fractals are
usually created by starting from a basic �gure and recursively replacing parts of it with more
complex constructs.

In this example, the basic �gure is the equilateral triangle; drawfractal \draws" the three
sides of the triangle:

drawfractal = function () {

...

fractal (0, length, fractalangle + 60);

fractal (0, length, fractalangle - 60);

fractal (0, length, fractalangle - 180);

...

};

The replacement rule is to replace each line segment with four:

original replacement
fractal does the recursive replacement:

fractal = function (level, length, angle) {

local nlength, newpenpos;

if (level >= maxlevel) {

newpenpos.x = penpos.x + length * cos (angle);

newpenpos.y = penpos.y + length * sin (angle);

line (canvas, null, penpos, newpenpos, ['color' = 1;]);

penpos = newpenpos;

return;

}

nlength = length / 3;

fractal (level + 1, nlength, angle);

fractal (level + 1, nlength, angle + 60);

fractal (level + 1, nlength, angle - 60);

fractal (level + 1, nlength, angle);

};

Recursion is controlled by level. If level exceeds maxlevel, fractal returns, otherwise it
makes the four recursive calls to itself. The fractal in Figure 1.1a was drawn with maxlevel set to

22

4.
The picture is drawn using the concept of the pen. Drawing is done relative to pen, which holds

the current pen coordinates, and pen is updated after each line is drawn.
transformfractal changes the size and orientation of the fractal. It takes two arguments,

prevpoint and currpoint, and rotates and scales the fractal, relative to its center, so that
prevpoint is mapped to currpoint. transformfractal is called from leftup. prevpoint is
set to the mouse coordinates during the down event, while currpoint is set to the coordinates
during the up event. Neither prevpoint nor currpoint need lie on the fractal outline; rather than
making the vertices or edges of the fractal selectable, setpick is used to make the entire view a
single selectable object. Figure 4.1 shows how the picture changes as the user moves the cursor.

(a) (b)

Figure 4.1: Moving the cursor scales and rotates the picture

Figure 4.2 shows a trace of the functions executed when the user transforms the fractal in
Figure 4.1a to the one in Figure 4.1b. For brevity, the trace does not show the lowest level of
recursion for fractal. Each level one fractal call makes four calls to itself, each of which makes
a call to line. The pictures to the right of the trace depict the state of the WYSIWYG view as
the program executes.

4.2 Trees

The program in this example draws trees of arbitrary degree. Each node of the tree is represented
by an entry in nodearray. Each entry contains a string label and information about the children
of the node. inode and iedge insert new nodes and edges; inode is called from leftdown, while
iedge is called from middleup. To insert an edge, the user pressed the middle button over the

23

leftup (['ppos' = ['x' = 200; 'y' = 50;];

'pos' = ['x' = 250; 'y' = 100;];])

transformfractal (['x' = 200; 'y' = 50;],

['x' = 250; 'y' = 100;])

drawfractal ()

fractal (0, 237.170825, 78.434949)

fractal (1, 79.056942, 78.434949)

fractal (1, 79.056942, 138.434949)

fractal (1, 79.056942, 18.434949)

fractal (1, 79.056942, 78.434949)

fractal (0, 237.170825, -41.565051)

fractal (1, 79.056942, -41.565051)

fractal (1, 79.056942, 18.434949)

fractal (1, 79.056942, -101.565051)

fractal (1, 79.056942, -41.565051)

fractal (0, 237.170825, -161.565051)

fractal (1, 79.056942, -161.565051)

fractal (1, 79.056942, -101.565051)

fractal (1, 79.056942, -221.565051)

fractal (1, 79.056942, -161.565051)

Figure 4.2: A trace of the execution sequence that draws a fractal

parent node, moves the mouse over the child node and releases the button. iedge performs the
following steps.

iedge = function (node1, node2) {

node1.ch[node1.chn] = node2;

node1.chn = node1.chn + 1;

node2.depth = node1.depth + 1;

complayout ();

clear (canvas);

drawtree (tree);

};

Whenever an edge is inserted, the program recomputes the tree layout. This is done by
complayout. The layout algorithm assigns distinct x-coordinates to each leaf node, and posi-
tions each intermediate node midway between its leftmost and rightmost children. drawnode and
drawedge draw the nodes and edges of the tree. The program contains two functions, boxnode
and circlenode, which draw a node either as a box or a circle. Which one is used is controlled
by assigning the appropriate function as a value to drawnode. changenode can be used to switch
between the two styles, i.e., typing

changenode (boxnode);

24

sets drawnode to boxnode, clears the display, and draws the tree using box-style nodes. Switching
between styles could also be done from the WYSIWYG view, using a menu. Adding such a menu
facility would require the following additions to the program.

menu = [

0 = 'box';

1 = 'circle';

];

rightdown = function (data) {

local i;

if ((i = displaymenu (canvas, menu)) == 0)

changenode (boxnode);

else if (i == 1)

changenode (circlenode);

};

Another modi�cation to the tree program would be to allows it to draw binary search trees.
dolayout is modi�ed to position each intermediate node so that it lies to the right of all the nodes
in its left subtree and to the left of all the nodes in its right subtree. Figures 4.3 and 4.4 show two
such trees; these were copied from Figures 17.5 and 14.11 in Reference [Sed88].

A B E G

H I L M

N P

R S

X

Figure 4.3: A radix search tree

Figure 4.4: A larger binary search tree

25

4.3 Delaunay Triangulations

In this example, an external process is used to maintain the delaunay triangulation of a set of sites.
The user can insert new sites or move existing sites to new positions. insert inserts a site at
position p:

insert = function (point) {

local s;

sites[sitesnum].num = sitesnum;

sites[sitesnum].point = point;

s = concat ('new ', sitesnum, ' ', point.x, ' ', point.y);

writeline (triedfd, s);

sitesnum = sitesnum + 1;

while ((s = readline (triedfd)) ~= '')

run (s);

box (canvas, sites[sitesnum - 1],

[0 = ['x' = point.x - 5; 'y' = point.y - 5;];

1 = ['x' = point.x + 5; 'y' = point.y + 5;];

]);

};

insert updates the editor's data structures, sends a message to the process indicating that a new
site was inserted, processes its response, and draws the new site as a box. The process responds
with a sequence of calls to insline and delline, which insert or delete an edge between two sites:

insline = function (i, j) {

lines[i][j].f = sites[i];

lines[i][j].l = sites[j];

line (canvas, null, ['x' = sites[i].point.x; 'y' = sites[i].point.y;],

['x' = sites[j].point.x; 'y' = sites[j].point.y;]);

};

delline = function (i, j) {

remove (j, lines[i]);

if (tablesize (lines[i]) == 0)

remove (i, lines);

line (canvas, null, ['x' = sites[i].point.x; 'y' = sites[i].point.y;],

['x' = sites[j].point.x; 'y' = sites[j].point.y;],

['color' = 0;]);

};

Because the picture is a triangulation, i.e., there are no line intersections, the view can be updated
incrementally by drawing and erasing lines. For example, delline removes an edge from the screen
by drawing it in the background color. Incremental techniques are also used to compute how the
triangulation itself changes when a new site is inserted. For deletion, however, the incremental
techniques are not signi�cantly faster than recomputing the complete triangulation.

Figure 4.5 shows a sample triangulation and how it changes when a new site is added to the
upper right corner.

26

(a) (b)

Figure 4.5: Adding a new site to the triangulation in (a) produces (b)

4.4 Directed Acyclic Graphs

In this example, lefty is programmed to handle graphs. It can control several windows with a
di�erent graph displayed in each one. lefty uses dot [GKNV93] as a layout server for the graphs.
The resulting tool is called dotty. dotty allows the user to read in graphs in dot's language and to
edit them in various ways.

Each graph is represented as a lefty table. Each table contains the data for the graph (nodes,
edges, etc.) and functions that implement all the possible operations. There is a prototype graph
table that is used to instantiate new graphs. Function dotty.protogt.insertnode inserts a node
into the graph data structure.

27

dotty.protogt.insertnode = function (gt, pos, size, name, attr, show) {

local nid, node, aid;

nid = gt.graph.maxnid;

if (~name) {

while (gt.graph.nodedict[(name = concat ('n', nid))] >= 0)

nid = nid + 1;

} else if (gt.graph.nodedict[name] >= 0) {

dotty.message (0, concat ('node: ', name, ' exists'));

return null;

}

gt.graph.nodedict[name] = nid;

gt.graph.maxnid = nid + 1;

gt.graph.nodes[nid] = [

dotty.keys.nid = nid;

dotty.keys.name = name;

dotty.keys.attr = copy (gt.graph.nodeattr);

dotty.keys.edges = [];

];

node = gt.graph.nodes[nid];

if (~attr)

attr = [];

if (~attr.label)

attr.label = '\N';

for (aid in attr)

node.attr[aid] = attr[aid];

gt.unpacknodeattr (gt, node);

if (~pos)

pos = ['x' = 10; 'y' = 10;];

node[dotty.keys.pos] = copy (pos);

if (~size)

size = ['x' = strlen (attr.label) * 30; 'y' = 30;];

if (size.x == 0)

size.x = 30;

node[dotty.keys.size] = copy (size);

if (show)

gt.drawnode (gt, gt.views, node);

if (~gt.noundo) {

gt.startadd2undo (gt);

gt.currundo.inserted.nodes[nid] = node;

gt.endadd2undo (gt);

}

return node;

};

28

lefty uses dot (running as a separate process) to compute the layouts. dotfd is an io channel
to a dot process.

...

writegraph (dotfd, graph, 1);

if (~(g = readgraph (dotfd))) {

...

}

...

Figure 4.6 shows a sample DAG.

11/1

01/100/1

10/1

00/-

10/1

10/1

01/1

01/-

00/-

00/1

10/-

10/1

11/1

00/0

00/1

00/1

01/1

01/1

00/-

10/1

01/1

00/-

11/1

11/1

st9

st1

st10
st8

st0

st7

st6

st5

st4

st3

st2

Figure 4.6: A Directed Acyclic Graph

dotty itself has become the basis for further customizations [KN93].

29

Chapter 5. Conclusions

A unique feature of lefty is the use of a single language to describe all aspects of picture handling.
Editing operations and layout algorithms are not hardwired in the editor; they are part of the
picture speci�cation. This allows the editor to handle a variety of pictures and still provide, for
each type of picture, functionality comparable to that of dedicated tools.

Providing two views, each of which presents information at a di�erent level of abstraction, gives
users more exibility in editing a picture. Some changes are easier to describe in one view than
in another. Also, users have preferences; some prefer describing operations with programs, while
others prefer using the mouse.

The editor's ability to communicate with external processes allows it to make use of existing
tools whose functionality would be di�cult to duplicate. This extensibility also makes it possible
to edit pictures for which the editor's procedural description is not desirable. For example, a
constraint-based editing environment can be implemented as an external process. Such a process
can display both the picture and the constraints and allow the user to edit both. This arrangement
simpli�es the implementation of a constraint-based system because the editor already provides
support for the user interface, and allows the constraint solver to be written in any language.

Using lefty to construct graphical front ends for existing tools is fast and convenient since the
existing tools do not need to be modi�ed. lefty, however, can also be used for building new appli-
cations. This can be a good alternative to building applications by integrating the user interface
with the main application into a single program. Implementing the user interface as a separate
process helps make it clear what functionality belongs to the user interface and what belongs to the
main application. Having a programmable front end makes it easier to experiment with di�erent
approaches. Debugging is also easier, since the main application can be driven by a text �le. In
an integrated application one would have to perform the sequence of mouse and keyboard events
that lead to the problem, and this can be tedious and error-prone. The speed disadvantage of an
interpreted system, and the cost of inter-process communication can|in some case|be prohibitive.
In most cases, however, these disadvantages do not a�ect the response time, which is dominated
by window system operations. In fact, having separate processes can improve performance, since
the processes can execute to some extent in parallel.

30

Appendix A. Running lefty

lefty can be started by issuing the command:
lefty [options] [file]
The �le name is optional. It may be -, for reading from standard input. lefty uses two environment
variables, LEFTYPATH and LEFTYOPTIONS. LEFTYPATH is a colon separated list of directories. When
lefty tries to open a �le, it searches that path for the �le. When lefty tries to start up another
process, it searches LEFTYPATH �rst, then the standard PATH variable. LEFTYOPTIONS can be used
to set speci�c options. Options speci�ed on the command line override options set through this
variable. Table A.1 shows the supported options. Upon startup, lefty sets the environment variable
LEFTYWINSYS to either "X11" or "mswin".

Option Range Default Description

-x Instructs the editor to exit after processing file.

-e <expr> lefty

expr.
expression is parsed and executed.

-el <num> 0-5 0 Set error reporting level. 0 never prints any mes-
sages. 1 prints severe errors, such as trying to
return from a non function. 2 is the most useful:
it reports function calls that cannot be executed,
either because there is no function, or because of
argument mismatches. 3 also warns about bad vari-
able names. 4,5 warn about expressions that do not
return a value. Only level 1 messages are real errors.
The rest arise from legal lefty statements, but may
be cased by some logic errors.

-sd <num> 0-2 2 Speci�es how much of the stack to show, when an
error message is to be printed. With 0, no part of
the stack is shown. With 1, only the top stack frame
is printed. With 2, the full stack is printed.

-sb <num> 0-2 2 Speci�es how much of each function in the stack to
show, when an error message is to be printed. With
0, no part of the function is shown. With 1, only
the line around the error is printed. With 2, the full
function body is printed.

-df <string> "" Sets the default font. This font is used whenever a
requested font cannot be found. The string must be
a legal X font. If string is "", lefty will draw small
boxes instead of text.

-ps <file> out.ps Speci�es a default �le name for postscript �les. This
name is used when no name is speci�ed in the
createwidget call.

-V Prints the version in stderr

Table A.1: Command line options

31

Appendix B. Language Speci�cation

In the formal speci�cation of the language below, keywords are shown in typewriter font, alterna-
tives are separated by vertical bars, parentheses indicate grouping, optional clauses are indicated
by brackets, and optional repetition is indicated by braces.

expression:
scalar-constant
variable [= expression]
expression (| j &) expression
expression (== j ~= j < j <= j > j >=) expression
expression (+ j - j * j / j %) expression
function-declaration
[f expression = expression ; g]

variable ([expression f , expression g])
(expression)

variable:
identi�er
variable . identi�er
variable [expression]

function-declaration:
function identi�er ([identi�er f , identi�er g]) {

f local [identi�er f , identi�er g] ; g
f statement g

}

statement:
expression ;

{ f statement g }

if (expression) statement [else statement]
while (expression) statement
for (expression ; expression ; expression) statement
for (variable in expression) statement
break ;

continue ;

return [expression] ;

A scalar constant is a number or a quoted character string. The language does not separate
integer and real types; all numbers are reals.

The dot syntax variable . identi�er is just a shorthand for variable [" identi�er "].
Assignment evaluates the right-hand side expression and assigns the resulting value to the

variable on the left-hand side. If evaluation of the right-hand side expression returns no value, the
left-hand side variable retains its previous value. Only the last component of the left-hand side

32

variable may be unde�ned, otherwise the assignment fails. For example, a.b.c = 10 succeeds if at
least a.b is de�ned.

Assignment of tables is by reference. For example, if b holds a table, a = b results in a pointing
to the same table.

The order of evaluation for & and | is left-to-right and evaluation terminates once the result is
determined. For example, evaluation of the expression:

0 == 1 | 1 == 1 | a ()

begins by evaluating 0 == 1. This is false, so execution proceeds with 1 == 1. Since this compar-
ison is true, the whole expression is true, so evaluation terminates. a is never called.

If the two sides of a comparison have di�erent types, the result is false.
For arithmetic operations, if any of the expressions is not a number, evaluation aborts. For %,

the two expressions must have no fractional part.
For table construction, each of the left-hand side expressions must evaluate to a scalar.
Functions are stored as scalars. There are also built-in functions; they provide functionality

that cannot be written in the language itself. Section 3.5 describes the built-in functions.
For function calls, if the evaluation of an argument returns no value, the function body is not

executed.

33

Appendix C. Program Listings

C.1 Box Program

load ('def.lefty');

definit ();

#

initialize window data

#

canvas = defcanvas;

wrect = [0 = ['x' = 0; 'y' = 0;]; 1 = ['x' = 400; 'y' = 500;];];

setwidgetattr (canvas, ['window' = wrect;]);

#

data structures

#

objarray = [];

objnum = 0;

#

misc functions

#

min = function (a, b) {

if (a <= b)

return a;

return b;

};

max = function (a, b) {

if (b <= a)

return a;

return b;

};

rectof = function (p1, p2) {

return [

0 = ['x' = min (p1.x, p2.x); 'y' = min (p1.y, p2.y);];

1 = ['x' = max (p1.x, p2.x); 'y' = max (p1.y, p2.y);];

];

};

pointadd = function (p1, p2) {

return ['x' = p2.x + p1.x; 'y' = p2.y + p1.y;];

};

pointsub = function (p1, p2) {

return ['x' = p2.x - p1.x; 'y' = p2.y - p1.y;];

};

#

rendering functions

34

#

drawbox = function (obj, color) {

box (canvas, obj, obj.rect, ['color' = color;]);

};

redrawboxes = function () {

local i;

clear (canvas);

for (i = 0; i < objnum; i = i + 1)

drawbox (objarray[i], 1);

};

redraw = function (canvas) {

redrawboxes ();

};

#

editing functions

#

new = function (rect) {

objarray[objnum] = [

'rect' = rect;

'id' = objnum;

];

objnum = objnum + 1;

return objarray[objnum - 1];

};

reshape = function (obj, rect) {

obj.rect = rect;

return obj;

};

move = function (obj, p) {

obj.rect[0] = pointadd (obj.rect[0], p);

obj.rect[1] = pointadd (obj.rect[1], p);

return obj;

};

delete = function (obj) {

if (obj.id ~= objnum - 1) {

objarray[obj.id] = objarray[objnum - 1];

objarray[obj.id].id = obj.id;

}

remove (objnum - 1, objarray);

objnum = objnum - 1;

};

#

user interface functions

#

left mouse button creates new box

35

middle button moves a box

right button deletes a box

#

leftdown = function (data) {

if (data.obj ~= null)

return;

leftbox = new (rectof (data.pos, data.pos));

drawbox (leftbox, 1);

setgfxattr (canvas, ['mode' = 'xor';]);

};

leftmove = function (data) {

if (~leftbox)

return;

drawbox (leftbox, 1);

clearpick (canvas, leftbox);

reshape (leftbox, rectof (data.ppos, data.pos));

drawbox (leftbox, 1);

};

leftup = function (data) {

if (~leftbox)

return;

drawbox (leftbox, 1);

clearpick (canvas, leftbox);

reshape (leftbox, rectof (data.ppos, data.pos));

setgfxattr (canvas, ['mode' = 'src';]);

drawbox (leftbox, 1);

remove ('leftbox');

};

middledown = function (data) {

if (data.obj == null)

return;

middlebox = data.obj;

middlepos = data.pos;

setgfxattr (canvas, ['mode' = 'xor';]);

};

middlemove = function (data) {

if (~middlebox)

return;

drawbox (middlebox, 1);

clearpick (canvas, middlebox);

move (middlebox, pointsub (middlepos, data.pos));

middlepos = data.pos;

drawbox (middlebox, 1);

};

middleup = function (data) {

36

if (~middlebox)

return;

drawbox (middlebox, 1);

clearpick (canvas, middlebox);

move (middlebox, pointsub (middlepos, data.pos));

setgfxattr (canvas, ['mode' = 'src';]);

drawbox (middlebox, 1);

remove ('middlepos');

remove ('middlebox');

};

rightup = function (data) {

if (data.pobj == null)

return;

drawbox (data.obj, 0);

clearpick (canvas, data.obj);

delete (data.obj);

};

dops = function () {

local s;

s = ['x' = 8 * 300; 'y' = 10.5 * 300;];

canvas = createwidget (-1, ['type' = 'ps'; 'size' = s;]);

setwidgetattr (canvas, ['window' = wrect;]);

redraw (canvas);

destroywidget (canvas);

canvas = defcanvas;

};

37

C.2 Delaunay Triangulation Program

load ('def.lefty');

definit ();

data structures

#

sitesnum = 0;

sites = [];

lines = [];

canvas = defcanvas;

wrect = [0 = ['x' = 0; 'y' = 0;]; 1 = ['x' = 400; 'y' = 500;];];

setwidgetattr (canvas, ['window' = wrect;]);

triedfd = openio ('pipe', 'tried', 'w+', '%e %i %o');

drawing functions

#

redraw = function (id) {

local i, j, rect, s;

rect = [];

clear (canvas);

for (i in lines) {

for (j in lines[i]) {

s = lines[i][j];

line (canvas, null, ['x' = s.f.point.x; 'y' = s.f.point.y;],

['x' = s.l.point.x; 'y' = s.l.point.y;]);

}

}

for (i = 0; i < sitesnum; i = i + 1) {

rect[0] = [

'x' = sites[i].point.x - 5; 'y' = sites[i].point.y - 5;

];

rect[1] = [

'x' = sites[i].point.x + 5; 'y' = sites[i].point.y + 5;

];

box (canvas, sites[i], rect);

}

};

editing functions

#

insert = function (point) {

local s;

sites[sitesnum].num = sitesnum;

sites[sitesnum].point = point;

writeline (triedfd,

38

concat ('new ', sitesnum, ' ', point.x, ' ', point.y));

sitesnum = sitesnum + 1;

while ((s = readline (triedfd)) ~= '')

run (s);

box (canvas, sites[sitesnum - 1],

[0 = ['x' = point.x - 5; 'y' = point.y - 5;];

1 = ['x' = point.x + 5; 'y' = point.y + 5;];

]);

};

mv = function (node, point) {

local i;

box (canvas, node, [

0 = ['x' = node.point.x - 5; 'y' = node.point.y - 5;];

1 = ['x' = node.point.x + 5; 'y' = node.point.y + 5;];

], ['color' = 0;]);

clearpick (canvas, node);

for (i = 0; i < sitesnum; i = i + 1) {

if (lines[i][node.num])

delline (i, node.num);

if (lines[node.num][i])

delline (node.num, i);

}

node.point = point;

writeline (triedfd,

concat ('mv ', node.num, ' ', point.x, ' ', point.y));

while ((s = readline (triedfd)) ~= '')

run (s);

box (canvas, node, [

0 = ['x' = point.x - 5; 'y' = point.y - 5;];

1 = ['x' = point.x + 5; 'y' = point.y + 5;];

]);

};

insline = function (i, j) {

lines[i][j].f = sites[i];

lines[i][j].l = sites[j];

line (canvas, null,

['x' = sites[i].point.x; 'y' = sites[i].point.y;],

['x' = sites[j].point.x; 'y' = sites[j].point.y;]);

};

delline = function (i, j) {

remove (j, lines[i]);

if (tablesize (lines[i]) == 0)

remove (i, lines);

line (canvas, null,

['x' = sites[i].point.x; 'y' = sites[i].point.y;],

39

['x' = sites[j].point.x; 'y' = sites[j].point.y;],

['color' = 0;]);

};

user interface functions

#

leftdown = function (data) {

if (~data.obj)

insert (data.pos);

};

leftmove = function (data) {

if (data.obj)

mv (data.obj, data.pos);

};

keydown = function (data) {

redraw (0);

};

dops = function () {

local r;

r = [0 = ['x' = 0; 'y' = 0;]; 1 = ['x' = 8 * 300; 'y' = 10.5 * 300;];];

canvas = createwidget (-1, [

'type' = 'ps';

'origin' = r[0];

'size' = r[1];

]);

setwidgetattr (canvas, ['window' = wrect;]);

redraw (0);

destroywidget (canvas);

canvas=defcanvas;

};

40

Bibliography

[FH85] C. W. Fraser and D. R. Hanson. High-level language facilities for low-level services. In
12th ACM Symp. on Prin. of Programming Languages, pages 217{224, 1985.

[GKNV93] E.R. Gansner, E. Koutso�os, S.C. North, and K.P. Vo. A technique for drawing directed
graphs. IEEE-TSE, March 1993.

[GNV88] E. R. Gansner, S. C. North, and K. P. Vo. DAG|A program that draws directed
graphs. Software|Practice and Experience, 18(11):1047{1062, November 1988.

[GS85] L. Guibas and J. Stol�. Primitives for the manipulation of general subdivisions and the
computation of voronoi diagrams. ACM Transactions on Graphics, 4(2):74{123, April
1985.

[KN93] Eleftherios Koutso�os and Stephen C. North. Viewing graphs with dotty. Technical
report, AT&T Bell Laboratories, 1993.

[PLR85] R. Pike, B. Locanthi, and J. Reiser. Handware/software trade-o�s for bitmap graphics
on the blit. Software|Practice and Experience, 15(2):131{151, 1985.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, 2nd edition, 1988.

[SUN88] SUN Microsystems Inc., 2550 Garcia Ave., Mountain View, CA 94043. NeWS Manual,
1988.

[TdBB88] R. Tamassia, G. di Battista, and C. Batini. Automatic graph drawing and readabil-
ity of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):61{79,
January/February 1988.

[Uni85] University of California at Berkeley. Magic, 1985.

41

