Graphviz 14.1.2~dev.20260119.0928
Loading...
Searching...
No Matches
ellipse.c
Go to the documentation of this file.
1
3/*************************************************************************
4 * Copyright (c) 2012 AT&T Intellectual Property
5 * All rights reserved. This program and the accompanying materials
6 * are made available under the terms of the Eclipse Public License v1.0
7 * which accompanies this distribution, and is available at
8 * https://www.eclipse.org/legal/epl-v10.html
9 *
10 * Contributors: Details at https://graphviz.org
11 *************************************************************************/
12
13/* This code is derived from the Java implementation by Luc Maisonobe */
14/* Copyright (c) 2003-2004, Luc Maisonobe
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with
18 * or without modification, are permitted provided that
19 * the following conditions are met:
20 *
21 * Redistributions of source code must retain the
22 * above copyright notice, this list of conditions and
23 * the following disclaimer.
24 * Redistributions in binary form must reproduce the
25 * above copyright notice, this list of conditions and
26 * the following disclaimer in the documentation
27 * and/or other materials provided with the
28 * distribution.
29 * Neither the names of spaceroots.org, spaceroots.com
30 * nor the names of their contributors may be used to
31 * endorse or promote products derived from this
32 * software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
35 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
36 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
37 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
38 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
39 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
40 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
41 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
42 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
43 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
45 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
46 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
47 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48 * POSSIBILITY OF SUCH DAMAGE.
49 */
50
51#include "config.h"
52
53#include <assert.h>
54#include <common/render.h>
55#include <limits.h>
56#include <math.h>
57#include <pathplan/pathplan.h>
58#include <stdbool.h>
59#include <util/alloc.h>
60#include <util/list.h>
61
62#define TWOPI (2 * M_PI)
63
64typedef struct {
65 double cx, cy; /* center */
66 double a, b; /* semi-major and -minor axes */
67
68 /* Start and end angles of the arc. */
69 double eta1, eta2;
70} ellipse_t;
71
72static void initEllipse(ellipse_t *ep, double cx, double cy, double a, double b,
73 double lambda1, double lambda2) {
74 ep->cx = cx;
75 ep->cy = cy;
76 ep->a = a;
77 ep->b = b;
78
79 ep->eta1 = atan2(sin(lambda1) / b, cos(lambda1) / a);
80 ep->eta2 = atan2(sin(lambda2) / b, cos(lambda2) / a);
81
82 // make sure we have eta1 <= eta2 <= eta1 + 2*PI
83 ep->eta2 -= TWOPI * floor((ep->eta2 - ep->eta1) / TWOPI);
84
85 // the preceding correction fails if we have exactly eta2 - eta1 = 2*PI
86 // it reduces the interval to zero length
87 if (lambda2 - lambda1 > M_PI && ep->eta2 - ep->eta1 < M_PI) {
88 ep->eta2 += TWOPI;
89 }
90}
91
92typedef double erray_t[2][4][4];
93
94// coefficients for error estimation
95// while using cubic Bézier curves for approximation
96// 0 < b/a < 1/4
97static const erray_t coeffs3Low = {
98 {{3.85268, -21.229, -0.330434, 0.0127842},
99 {-1.61486, 0.706564, 0.225945, 0.263682},
100 {-0.910164, 0.388383, 0.00551445, 0.00671814},
101 {-0.630184, 0.192402, 0.0098871, 0.0102527}},
102 {{-0.162211, 9.94329, 0.13723, 0.0124084},
103 {-0.253135, 0.00187735, 0.0230286, 0.01264},
104 {-0.0695069, -0.0437594, 0.0120636, 0.0163087},
105 {-0.0328856, -0.00926032, -0.00173573, 0.00527385}}};
106
107// coefficients for error estimation
108// while using cubic Bézier curves for approximation
109// 1/4 <= b/a <= 1
110static const erray_t coeffs3High = {
111 {{0.0899116, -19.2349, -4.11711, 0.183362},
112 {0.138148, -1.45804, 1.32044, 1.38474},
113 {0.230903, -0.450262, 0.219963, 0.414038},
114 {0.0590565, -0.101062, 0.0430592, 0.0204699}},
115 {{0.0164649, 9.89394, 0.0919496, 0.00760802},
116 {0.0191603, -0.0322058, 0.0134667, -0.0825018},
117 {0.0156192, -0.017535, 0.00326508, -0.228157},
118 {-0.0236752, 0.0405821, -0.0173086, 0.176187}}};
119
120// safety factor to convert the "best" error approximation
121// into a "max bound" error
122static const double safety3[] = {0.001, 4.98, 0.207, 0.0067};
123
124/* Compute the value of a rational function.
125 * This method handles rational functions where the numerator is
126 * quadratic and the denominator is linear
127 */
128static double RationalFunction(double x, const double *c) {
129 return (x * (x * c[0] + c[1]) + c[2]) / (x + c[3]);
130}
131
132/* Estimate the approximation error for a sub-arc of the instance.
133 * tA and tB give the start and end angle of the subarc
134 * Returns upper bound of the approximation error between the Bézier
135 * curve and the real ellipse
136 */
137static double estimateError(ellipse_t *ep, double etaA, double etaB) {
138 double c0, c1, eta = 0.5 * (etaA + etaB);
139
140 double x = ep->b / ep->a;
141 double dEta = etaB - etaA;
142 double cos2 = cos(2 * eta);
143 double cos4 = cos(4 * eta);
144 double cos6 = cos(6 * eta);
145
146 // select the right coefficient's set according to b/a
147 const double(*coeffs)[4][4] = x < 0.25 ? coeffs3Low : coeffs3High;
148
149 c0 = RationalFunction(x, coeffs[0][0]) +
150 cos2 * RationalFunction(x, coeffs[0][1]) +
151 cos4 * RationalFunction(x, coeffs[0][2]) +
152 cos6 * RationalFunction(x, coeffs[0][3]);
153
154 c1 = RationalFunction(x, coeffs[1][0]) +
155 cos2 * RationalFunction(x, coeffs[1][1]) +
156 cos4 * RationalFunction(x, coeffs[1][2]) +
157 cos6 * RationalFunction(x, coeffs[1][3]);
158
159 return RationalFunction(x, safety3) * ep->a * exp(c0 + c1 * dEta);
160}
161
162typedef LIST(pointf) bezier_path_t;
163
164/* append points to a Bézier path
165 * Assume initial call to moveTo to initialize, followed by
166 * calls to curveTo and lineTo, and finished with endPath.
167 */
168
169static void moveTo(bezier_path_t *polypath, double x, double y) {
170 LIST_APPEND(polypath, ((pointf){.x = x, .y = y}));
171}
172
173static void curveTo(bezier_path_t *polypath, double x1, double y1, double x2,
174 double y2, double x3, double y3) {
175 LIST_APPEND(polypath, ((pointf){.x = x1, .y = y1}));
176 LIST_APPEND(polypath, ((pointf){.x = x2, .y = y2}));
177 LIST_APPEND(polypath, ((pointf){.x = x3, .y = y3}));
178}
179
180static void lineTo(bezier_path_t *polypath, double x, double y) {
181 const pointf curp = LIST_GET(polypath, LIST_SIZE(polypath) - 1);
182 curveTo(polypath, curp.x, curp.y, x, y, x, y);
183}
184
185static void endPath(bezier_path_t *polypath) {
186 const pointf p0 = LIST_GET(polypath, 0);
187 lineTo(polypath, p0.x, p0.y);
188}
189
190/* genEllipticPath:
191 * Approximate an elliptical arc via Béziers of degree 3
192 * The path begins and ends with line segments to the center of the ellipse.
193 * Returned path must be freed by the caller.
194 */
196 Ppolyline_t *polypath = gv_alloc(sizeof(Ppolyline_t));
197
198 static const double THRESHOLD = 0.00001; // quality of approximation
199
200 // find the number of Bézier curves needed
201 bool found = false;
202 int i, n = 1;
203 while (!found && n < 1024) {
204 double diffEta = (ep->eta2 - ep->eta1) / n;
205 if (diffEta <= 0.5 * M_PI) {
206 double etaOne = ep->eta1;
207 found = true;
208 for (i = 0; found && i < n; ++i) {
209 double etaA = etaOne;
210 etaOne += diffEta;
211 found = estimateError(ep, etaA, etaOne) <= THRESHOLD;
212 }
213 }
214 n = n << 1;
215 }
216
217 const double dEta = (ep->eta2 - ep->eta1) / n;
218 double etaB = ep->eta1;
219
220 double cosEtaB = cos(etaB);
221 double sinEtaB = sin(etaB);
222 double aCosEtaB = ep->a * cosEtaB;
223 double bSinEtaB = ep->b * sinEtaB;
224 double aSinEtaB = ep->a * sinEtaB;
225 double bCosEtaB = ep->b * cosEtaB;
226 double xB = ep->cx + aCosEtaB;
227 double yB = ep->cy + bSinEtaB;
228 double xBDot = -aSinEtaB;
229 double yBDot = bCosEtaB;
230
231 bezier_path_t bezier_path = {0};
232 moveTo(&bezier_path, ep->cx, ep->cy);
233 lineTo(&bezier_path, xB, yB);
234
235 const double t = tan(0.5 * dEta);
236 const double alpha = sin(dEta) * (sqrt(4 + 3 * t * t) - 1) / 3;
237
238 for (i = 0; i < n; ++i) {
239
240 double xA = xB;
241 double yA = yB;
242 double xADot = xBDot;
243 double yADot = yBDot;
244
245 etaB += dEta;
246 cosEtaB = cos(etaB);
247 sinEtaB = sin(etaB);
248 aCosEtaB = ep->a * cosEtaB;
249 bSinEtaB = ep->b * sinEtaB;
250 aSinEtaB = ep->a * sinEtaB;
251 bCosEtaB = ep->b * cosEtaB;
252 xB = ep->cx + aCosEtaB;
253 yB = ep->cy + bSinEtaB;
254 xBDot = -aSinEtaB;
255 yBDot = bCosEtaB;
256
257 curveTo(&bezier_path, xA + alpha * xADot, yA + alpha * yADot,
258 xB - alpha * xBDot, yB - alpha * yBDot, xB, yB);
259 }
260
261 endPath(&bezier_path);
262
263 LIST_DETACH(&bezier_path, &polypath->ps, &polypath->pn);
264
265 return polypath;
266}
267
268/* ellipticWedge:
269 * Return a cubic Bézier for an elliptical wedge, with center ctr, x and y
270 * semi-axes xsemi and ysemi, start angle angle0 and end angle angle1.
271 * This includes beginning and ending line segments to the ellipse center.
272 * Calling function must free storage of returned path.
273 */
274Ppolyline_t *ellipticWedge(pointf ctr, double xsemi, double ysemi,
275 double angle0, double angle1) {
276 ellipse_t ell;
277
278 initEllipse(&ell, ctr.x, ctr.y, xsemi, ysemi, angle0, angle1);
279 return genEllipticPath(&ell);
280}
Memory allocation wrappers that exit on failure.
static void * gv_alloc(size_t size)
Definition alloc.h:47
#define M_PI
Definition arith.h:41
static void lineTo(bezier_path_t *polypath, double x, double y)
Definition ellipse.c:180
static Ppolyline_t * genEllipticPath(ellipse_t *ep)
Definition ellipse.c:195
static const erray_t coeffs3Low
Definition ellipse.c:97
static const erray_t coeffs3High
Definition ellipse.c:110
#define TWOPI
Definition ellipse.c:62
static double RationalFunction(double x, const double *c)
Definition ellipse.c:128
static void initEllipse(ellipse_t *ep, double cx, double cy, double a, double b, double lambda1, double lambda2)
Definition ellipse.c:72
Ppolyline_t * ellipticWedge(pointf ctr, double xsemi, double ysemi, double angle0, double angle1)
Definition ellipse.c:274
static double estimateError(ellipse_t *ep, double etaA, double etaB)
Definition ellipse.c:137
static void endPath(bezier_path_t *polypath)
Definition ellipse.c:185
static void curveTo(bezier_path_t *polypath, double x1, double y1, double x2, double y2, double x3, double y3)
Definition ellipse.c:173
static const double safety3[]
Definition ellipse.c:122
double erray_t[2][4][4]
Definition ellipse.c:92
type-generic dynamically expanding list
#define LIST_DETACH(list, datap, sizep)
Definition list.h:443
#define LIST(type)
Definition list.h:55
#define LIST_SIZE(list)
Definition list.h:80
#define LIST_APPEND(list, item)
Definition list.h:120
#define LIST_GET(list, index)
Definition list.h:155
finds and smooths shortest paths
#define alpha
Definition shapes.c:4058
size_t pn
Definition pathgeom.h:47
Ppoint_t * ps
Definition pathgeom.h:46
double a
Definition ellipse.c:66
double cx
Definition ellipse.c:65
double b
Definition ellipse.c:66
double eta1
Definition ellipse.c:69
double eta2
Definition ellipse.c:69
double cy
Definition ellipse.c:65
double x
Definition geom.h:29
double y
Definition geom.h:29