Graphviz 13.0.0~dev.20250402.0402
Loading...
Searching...
No Matches
trapezoid.c
Go to the documentation of this file.
1
9/*************************************************************************
10 * Copyright (c) 2011 AT&T Intellectual Property
11 * All rights reserved. This program and the accompanying materials
12 * are made available under the terms of the Eclipse Public License v1.0
13 * which accompanies this distribution, and is available at
14 * https://www.eclipse.org/legal/epl-v10.html
15 *
16 * Contributors: Details at https://graphviz.org
17 *************************************************************************/
18
19
20#include "config.h"
21#include <string.h>
22#include <assert.h>
23#include <stdbool.h>
24#include <stddef.h>
25#include <stdint.h>
26#include <stdio.h>
27#include <math.h>
28#include <common/geom.h>
29#include <common/types.h>
30#include <ortho/trap.h>
31#include <util/alloc.h>
32#include <util/gv_math.h>
33#include <util/list.h>
34#include <util/unreachable.h>
35
36/* Node types */
37
38#define T_X 1
39#define T_Y 2
40#define T_SINK 3
41
42#define FIRSTPT 1 /* checking whether pt. is inserted */
43#define LASTPT 2
44
45#define S_LEFT 1 /* for merge-direction */
46#define S_RIGHT 2
47
48#define INF 1<<30
49
50#define CROSS(v0, v1, v2) (((v1).x - (v0).x)*((v2).y - (v0).y) - \
51 ((v1).y - (v0).y)*((v2).x - (v0).x))
52
53typedef struct {
54 int nodetype; /* Y-node or S-node */
55 int segnum;
57 size_t trnum;
58 size_t parent;
59 size_t left, right;
60} qnode_t;
61
63DEFINE_LIST(qnodes, qnode_t)
64
65/* Return a new node to be added into the query tree */
66static size_t newnode(qnodes_t *qs) {
67 qnodes_append(qs, (qnode_t){0});
68 return qnodes_size(qs) - 1;
69}
70
71/* Return a free trapezoid */
72static size_t newtrap(traps_t *tr) {
73 tr->data = gv_recalloc(tr->data, tr->length, tr->length + 1, sizeof(trap_t));
74 ++tr->length;
75 return tr->length - 1;
76}
77
79static pointf max_(pointf v0, pointf v1) {
80 if (v0.y > v1.y + C_EPS)
81 return v0;
82 if (fp_equal(v0.y, v1.y)) {
83 if (v0.x > v1.x + C_EPS)
84 return v0;
85 return v1;
86 }
87 return v1;
88}
89
91static pointf min_(pointf v0, pointf v1) {
92 if (v0.y < v1.y - C_EPS)
93 return v0;
94 if (fp_equal(v0.y, v1.y)) {
95 if (v0.x < v1.x)
96 return v0;
97 return v1;
98 }
99 return v1;
100}
101
103 return greater_than(v0, v1) || equal_to(v0, v1);
104}
105
106static bool less_than(pointf v0, pointf v1) {
107 return !greater_than_equal_to(v0, v1);
108}
109
110/* Initialize the query structure (Q) and the trapezoid table (T)
111 * when the first segment is added to start the trapezoidation. The
112 * query-tree starts out with 4 trapezoids, one S-node and 2 Y-nodes
113 *
114 * 4
115 * -----------------------------------
116 * \
117 * 1 \ 2
118 * \
119 * -----------------------------------
120 * 3
121 */
122
123static size_t init_query_structure(int segnum, segment_t *seg, traps_t *tr,
124 qnodes_t *qs) {
125 segment_t *s = &seg[segnum];
126
127 const size_t i1 = newnode(qs);
128 qnodes_at(qs, i1)->nodetype = T_Y;
129 qnodes_at(qs, i1)->yval = max_(s->v0, s->v1); // root
130 const size_t root = i1;
131
132 const size_t i2 = newnode(qs);
133 qnodes_at(qs, i1)->right = i2;
134 qnodes_at(qs, i2)->nodetype = T_SINK;
135 qnodes_at(qs, i2)->parent = i1;
136
137 const size_t i3 = newnode(qs);
138 qnodes_at(qs, i1)->left = i3;
139 qnodes_at(qs, i3)->nodetype = T_Y;
140 qnodes_at(qs, i3)->yval = min_(s->v0, s->v1); // root
141 qnodes_at(qs, i3)->parent = i1;
142
143 const size_t i4 = newnode(qs);
144 qnodes_at(qs, i3)->left = i4;
145 qnodes_at(qs, i4)->nodetype = T_SINK;
146 qnodes_at(qs, i4)->parent = i3;
147
148 const size_t i5 = newnode(qs);
149 qnodes_at(qs, i3)->right = i5;
150 qnodes_at(qs, i5)->nodetype = T_X;
151 qnodes_at(qs, i5)->segnum = segnum;
152 qnodes_at(qs, i5)->parent = i3;
153
154 const size_t i6 = newnode(qs);
155 qnodes_at(qs, i5)->left = i6;
156 qnodes_at(qs, i6)->nodetype = T_SINK;
157 qnodes_at(qs, i6)->parent = i5;
158
159 const size_t i7 = newnode(qs);
160 qnodes_at(qs, i5)->right = i7;
161 qnodes_at(qs, i7)->nodetype = T_SINK;
162 qnodes_at(qs, i7)->parent = i5;
163
164 const size_t t1 = newtrap(tr); // middle left
165 const size_t t2 = newtrap(tr); // middle right
166 const size_t t3 = newtrap(tr); // bottom-most
167 const size_t t4 = newtrap(tr); // topmost
168
169 tr->data[t1].hi = qnodes_get(qs, i1).yval;
170 tr->data[t2].hi = qnodes_get(qs, i1).yval;
171 tr->data[t4].lo = qnodes_get(qs, i1).yval;
172 tr->data[t1].lo = qnodes_get(qs, i3).yval;
173 tr->data[t2].lo = qnodes_get(qs, i3).yval;
174 tr->data[t3].hi = qnodes_get(qs, i3).yval;
175 tr->data[t4].hi.y = (double)(INF);
176 tr->data[t4].hi.x = (double)(INF);
177 tr->data[t3].lo.y = (double)-1 * (INF);
178 tr->data[t3].lo.x = (double)-1 * (INF);
179 tr->data[t1].rseg = segnum;
180 tr->data[t2].lseg = segnum;
181 tr->data[t1].u0 = t4;
182 tr->data[t2].u0 = t4;
183 tr->data[t1].d0 = t3;
184 tr->data[t2].d0 = t3;
185 tr->data[t4].d0 = t1;
186 tr->data[t3].u0 = t1;
187 tr->data[t4].d1 = t2;
188 tr->data[t3].u1 = t2;
189
190 tr->data[t1].sink = i6;
191 tr->data[t2].sink = i7;
192 tr->data[t3].sink = i4;
193 tr->data[t4].sink = i2;
194
195 tr->data[t1].state = ST_VALID;
196 tr->data[t2].state = ST_VALID;
197 tr->data[t3].state = ST_VALID;
198 tr->data[t4].state = ST_VALID;
199
200 qnodes_at(qs, i2)->trnum = t4;
201 qnodes_at(qs, i4)->trnum = t3;
202 qnodes_at(qs, i6)->trnum = t1;
203 qnodes_at(qs, i7)->trnum = t2;
204
205 s->is_inserted = true;
206 return root;
207}
208
209/* Return true if the vertex v is to the left of line segment no.
210 * segnum. Takes care of the degenerate cases when both the vertices
211 * have the same y--cood, etc.
212 */
213static bool
214is_left_of (int segnum, segment_t* seg, pointf *v)
215{
216 segment_t *s = &seg[segnum];
217 double area;
218
219 if (greater_than(s->v1, s->v0)) { // segment going upwards
220 if (fp_equal(s->v1.y, v->y)) {
221 if (v->x < s->v1.x)
222 area = 1.0;
223 else
224 area = -1.0;
225 }
226 else if (fp_equal(s->v0.y, v->y)) {
227 if (v->x < s->v0.x)
228 area = 1.0;
229 else
230 area = -1.0;
231 }
232 else
233 area = CROSS(s->v0, s->v1, *v);
234 }
235 else /* v0 > v1 */
236 {
237 if (fp_equal(s->v1.y, v->y)) {
238 if (v->x < s->v1.x)
239 area = 1.0;
240 else
241 area = -1.0;
242 }
243 else if (fp_equal(s->v0.y, v->y)) {
244 if (v->x < s->v0.x)
245 area = 1.0;
246 else
247 area = -1.0;
248 }
249 else
250 area = CROSS(s->v1, s->v0, (*v));
251 }
252
253 return area > 0.0;
254}
255
256/* Returns true if the corresponding endpoint of the given segment is */
257/* already inserted into the segment tree. Use the simple test of */
258/* whether the segment which shares this endpoint is already inserted */
259static bool inserted (int segnum, segment_t* seg, int whichpt)
260{
261 if (whichpt == FIRSTPT)
262 return seg[seg[segnum].prev].is_inserted;
263 else
264 return seg[seg[segnum].next].is_inserted;
265}
266
267/* This is query routine which determines which trapezoid does the
268 * point v lie in. The return value is the trapezoid number.
269 */
270static size_t locate_endpoint(pointf *v, pointf *vo, size_t r, segment_t *seg,
271 qnodes_t *qs) {
272 qnode_t *rptr = qnodes_at(qs, r);
273
274 switch (rptr->nodetype) {
275 case T_SINK:
276 return rptr->trnum;
277
278 case T_Y:
279 if (greater_than(*v, rptr->yval)) // above
280 return locate_endpoint(v, vo, rptr->right, seg, qs);
281 if (equal_to(*v, rptr->yval)) { // the point is already inserted
282 if (greater_than(*vo, rptr->yval)) // above
283 return locate_endpoint(v, vo, rptr->right, seg, qs);
284 return locate_endpoint(v, vo, rptr->left, seg, qs); // below
285 }
286 return locate_endpoint(v, vo, rptr->left, seg, qs); // below
287
288 case T_X:
289 if (equal_to(*v, seg[rptr->segnum].v0) ||
290 equal_to(*v, seg[rptr->segnum].v1)) {
291 if (fp_equal(v->y, vo->y)) { // horizontal segment
292 if (vo->x < v->x)
293 return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */
294 return locate_endpoint(v, vo, rptr->right, seg, qs); // right
295 }
296
297 if (is_left_of(rptr->segnum, seg, vo))
298 return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */
299 return locate_endpoint(v, vo, rptr->right, seg, qs); // right
300 }
301 if (is_left_of(rptr->segnum, seg, v))
302 return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */
303 return locate_endpoint(v, vo, rptr->right, seg, qs); // right
304
305 default:
306 break;
307 }
308 UNREACHABLE();
309}
310
311/* Thread in the segment into the existing trapezoidation. The
312 * limiting trapezoids are given by tfirst and tlast (which are the
313 * trapezoids containing the two endpoints of the segment. Merges all
314 * possible trapezoids which flank this segment and have been recently
315 * divided because of its insertion
316 */
317static void merge_trapezoids(int segnum, size_t tfirst, size_t tlast, int side,
318 traps_t *tr, qnodes_t *qs) {
319 /* First merge polys on the LHS */
320 size_t t = tfirst;
321 while (is_valid_trap(t) && greater_than_equal_to(tr->data[t].lo, tr->data[tlast].lo))
322 {
323 size_t tnext;
324 bool cond;
325 if (side == S_LEFT)
326 cond = (is_valid_trap(tnext = tr->data[t].d0) && tr->data[tnext].rseg == segnum) ||
327 (is_valid_trap(tnext = tr->data[t].d1) && tr->data[tnext].rseg == segnum);
328 else
329 cond = (is_valid_trap(tnext = tr->data[t].d0) && tr->data[tnext].lseg == segnum) ||
330 (is_valid_trap(tnext = tr->data[t].d1) && tr->data[tnext].lseg == segnum);
331
332 if (cond)
333 {
334 if (tr->data[t].lseg == tr->data[tnext].lseg &&
335 tr->data[t].rseg == tr->data[tnext].rseg) /* good neighbours */
336 { /* merge them */
337 /* Use the upper node as the new node i.e. t */
338
339 const size_t ptnext = qnodes_get(qs, tr->data[tnext].sink).parent;
340
341 if (qnodes_get(qs, ptnext).left == tr->data[tnext].sink)
342 qnodes_at(qs, ptnext)->left = tr->data[t].sink;
343 else
344 qnodes_at(qs, ptnext)->right = tr->data[t].sink; // redirect parent
345
346
347 /* Change the upper neighbours of the lower trapezoids */
348
349 if (is_valid_trap(tr->data[t].d0 = tr->data[tnext].d0)) {
350 if (tr->data[tr->data[t].d0].u0 == tnext)
351 tr->data[tr->data[t].d0].u0 = t;
352 else if (tr->data[tr->data[t].d0].u1 == tnext)
353 tr->data[tr->data[t].d0].u1 = t;
354 }
355
356 if (is_valid_trap(tr->data[t].d1 = tr->data[tnext].d1)) {
357 if (tr->data[tr->data[t].d1].u0 == tnext)
358 tr->data[tr->data[t].d1].u0 = t;
359 else if (tr->data[tr->data[t].d1].u1 == tnext)
360 tr->data[tr->data[t].d1].u1 = t;
361 }
362
363 tr->data[t].lo = tr->data[tnext].lo;
364 tr->data[tnext].state = ST_INVALID; /* invalidate the lower */
365 /* trapezium */
366 }
367 else /* not good neighbours */
368 t = tnext;
369 }
370 else /* do not satisfy the outer if */
371 t = tnext;
372
373 } /* end-while */
374
375}
376
378 size_t t, size_t tn) {
379 if (is_valid_trap(tr->data[t].u0) && is_valid_trap(tr->data[t].u1))
380 { /* continuation of a chain from abv. */
381 if (is_valid_trap(tr->data[t].usave)) { // three upper neighbours
382 if (tr->data[t].uside == S_LEFT)
383 {
384 tr->data[tn].u0 = tr->data[t].u1;
385 tr->data[t].u1 = SIZE_MAX;
386 tr->data[tn].u1 = tr->data[t].usave;
387
388 tr->data[tr->data[t].u0].d0 = t;
389 tr->data[tr->data[tn].u0].d0 = tn;
390 tr->data[tr->data[tn].u1].d0 = tn;
391 }
392 else /* intersects in the right */
393 {
394 tr->data[tn].u1 = SIZE_MAX;
395 tr->data[tn].u0 = tr->data[t].u1;
396 tr->data[t].u1 = tr->data[t].u0;
397 tr->data[t].u0 = tr->data[t].usave;
398
399 tr->data[tr->data[t].u0].d0 = t;
400 tr->data[tr->data[t].u1].d0 = t;
401 tr->data[tr->data[tn].u0].d0 = tn;
402 }
403
404 tr->data[t].usave = 0;
405 tr->data[tn].usave = 0;
406 }
407 else /* No usave.... simple case */
408 {
409 tr->data[tn].u0 = tr->data[t].u1;
410 tr->data[t].u1 = SIZE_MAX;
411 tr->data[tn].u1 = SIZE_MAX;
412 tr->data[tr->data[tn].u0].d0 = tn;
413 }
414 }
415 else
416 { /* fresh seg. or upward cusp */
417 const size_t tmp_u = tr->data[t].u0;
418 size_t td0;
419 if (is_valid_trap(td0 = tr->data[tmp_u].d0) && is_valid_trap(tr->data[tmp_u].d1))
420 { /* upward cusp */
421 if (tr->data[td0].rseg > 0 && !is_left_of(tr->data[td0].rseg, seg, &s->v1))
422 {
423 tr->data[t].u0 = SIZE_MAX;
424 tr->data[t].u1 = SIZE_MAX;
425 tr->data[tn].u1 = SIZE_MAX;
426 tr->data[tr->data[tn].u0].d1 = tn;
427 }
428 else /* cusp going leftwards */
429 {
430 tr->data[tn].u0 = SIZE_MAX;
431 tr->data[tn].u1 = SIZE_MAX;
432 tr->data[t].u1 = SIZE_MAX;
433 tr->data[tr->data[t].u0].d0 = t;
434 }
435 }
436 else /* fresh segment */
437 {
438 tr->data[tr->data[t].u0].d0 = t;
439 tr->data[tr->data[t].u0].d1 = tn;
440 }
441 }
442}
443
444/* Add in the new segment into the trapezoidation and update Q and T
445 * structures. First locate the two endpoints of the segment in the
446 * Q-structure. Then start from the topmost trapezoid and go down to
447 * the lower trapezoid dividing all the trapezoids in between .
448 */
449static void add_segment(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs) {
450 segment_t s;
451 size_t tfirst, tlast;
452 size_t tfirstr = 0, tlastr = 0;
453 int tribot = 0;
454 bool is_swapped;
455 int tmptriseg;
456
457 s = seg[segnum];
458 if (greater_than(s.v1, s.v0)) { // Get higher vertex in v0
459 SWAP(&s.v0, &s.v1);
460 SWAP(&s.root0, &s.root1);
461 is_swapped = true;
462 }
463 else is_swapped = false;
464
465 if (!inserted(segnum, seg, is_swapped ? LASTPT : FIRSTPT))
466 /* insert v0 in the tree */
467 {
468 size_t tmp_d;
469
470 const size_t tu = locate_endpoint(&s.v0, &s.v1, s.root0, seg, qs);
471 const size_t tl = newtrap(tr); // tl is the new lower trapezoid
472 tr->data[tl] = tr->data[tu];
473 tr->data[tu].lo = s.v0;
474 tr->data[tl].hi = s.v0;
475 tr->data[tu].d0 = tl;
476 tr->data[tu].d1 = 0;
477 tr->data[tl].u0 = tu;
478 tr->data[tl].u1 = 0;
479
480 if (is_valid_trap(tmp_d = tr->data[tl].d0) && tr->data[tmp_d].u0 == tu)
481 tr->data[tmp_d].u0 = tl;
482 if (is_valid_trap(tmp_d = tr->data[tl].d0) && tr->data[tmp_d].u1 == tu)
483 tr->data[tmp_d].u1 = tl;
484
485 if (is_valid_trap(tmp_d = tr->data[tl].d1) && tr->data[tmp_d].u0 == tu)
486 tr->data[tmp_d].u0 = tl;
487 if (is_valid_trap(tmp_d = tr->data[tl].d1) && tr->data[tmp_d].u1 == tu)
488 tr->data[tmp_d].u1 = tl;
489
490 /* Now update the query structure and obtain the sinks for the */
491 /* two trapezoids */
492
493 const size_t i1 = newnode(qs); // Upper trapezoid sink
494 const size_t i2 = newnode(qs); // Lower trapezoid sink
495 const size_t sk = tr->data[tu].sink;
496
497 qnodes_at(qs, sk)->nodetype = T_Y;
498 qnodes_at(qs, sk)->yval = s.v0;
499 qnodes_at(qs, sk)->segnum = segnum; // not really required … maybe later
500 qnodes_at(qs, sk)->left = i2;
501 qnodes_at(qs, sk)->right = i1;
502
503 qnodes_at(qs, i1)->nodetype = T_SINK;
504 qnodes_at(qs, i1)->trnum = tu;
505 qnodes_at(qs, i1)->parent = sk;
506
507 qnodes_at(qs, i2)->nodetype = T_SINK;
508 qnodes_at(qs, i2)->trnum = tl;
509 qnodes_at(qs, i2)->parent = sk;
510
511 tr->data[tu].sink = i1;
512 tr->data[tl].sink = i2;
513 tfirst = tl;
514 }
515 else /* v0 already present */
516 { /* Get the topmost intersecting trapezoid */
517 tfirst = locate_endpoint(&s.v0, &s.v1, s.root0, seg, qs);
518 }
519
520
521 if (!inserted(segnum, seg, is_swapped ? FIRSTPT : LASTPT))
522 /* insert v1 in the tree */
523 {
524 size_t tmp_d;
525
526 const size_t tu = locate_endpoint(&s.v1, &s.v0, s.root1, seg, qs);
527
528 const size_t tl = newtrap(tr); // tl is the new lower trapezoid
529 tr->data[tl] = tr->data[tu];
530 tr->data[tu].lo = s.v1;
531 tr->data[tl].hi = s.v1;
532 tr->data[tu].d0 = tl;
533 tr->data[tu].d1 = 0;
534 tr->data[tl].u0 = tu;
535 tr->data[tl].u1 = 0;
536
537 if (is_valid_trap(tmp_d = tr->data[tl].d0) && tr->data[tmp_d].u0 == tu)
538 tr->data[tmp_d].u0 = tl;
539 if (is_valid_trap(tmp_d = tr->data[tl].d0) && tr->data[tmp_d].u1 == tu)
540 tr->data[tmp_d].u1 = tl;
541
542 if (is_valid_trap(tmp_d = tr->data[tl].d1) && tr->data[tmp_d].u0 == tu)
543 tr->data[tmp_d].u0 = tl;
544 if (is_valid_trap(tmp_d = tr->data[tl].d1) && tr->data[tmp_d].u1 == tu)
545 tr->data[tmp_d].u1 = tl;
546
547 /* Now update the query structure and obtain the sinks for the */
548 /* two trapezoids */
549
550 const size_t i1 = newnode(qs); // Upper trapezoid sink
551 const size_t i2 = newnode(qs); // Lower trapezoid sink
552 const size_t sk = tr->data[tu].sink;
553
554 qnodes_at(qs, sk)->nodetype = T_Y;
555 qnodes_at(qs, sk)->yval = s.v1;
556 qnodes_at(qs, sk)->segnum = segnum; // not really required … maybe later
557 qnodes_at(qs, sk)->left = i2;
558 qnodes_at(qs, sk)->right = i1;
559
560 qnodes_at(qs, i1)->nodetype = T_SINK;
561 qnodes_at(qs, i1)->trnum = tu;
562 qnodes_at(qs, i1)->parent = sk;
563
564 qnodes_at(qs, i2)->nodetype = T_SINK;
565 qnodes_at(qs, i2)->trnum = tl;
566 qnodes_at(qs, i2)->parent = sk;
567
568 tr->data[tu].sink = i1;
569 tr->data[tl].sink = i2;
570 tlast = tu;
571 }
572 else /* v1 already present */
573 { /* Get the lowermost intersecting trapezoid */
574 tlast = locate_endpoint(&s.v1, &s.v0, s.root1, seg, qs);
575 tribot = 1;
576 }
577
578 /* Thread the segment into the query tree creating a new X-node */
579 /* First, split all the trapezoids which are intersected by s into */
580 /* two */
581
582 size_t t = tfirst; // topmost trapezoid
583
584 while (is_valid_trap(t) && greater_than_equal_to(tr->data[t].lo, tr->data[tlast].lo))
585 /* traverse from top to bot */
586 {
587 const size_t sk = tr->data[t].sink;
588 const size_t i1 = newnode(qs); // left trapezoid sink
589 const size_t i2 = newnode(qs); // right trapezoid sink
590
591 qnodes_at(qs, sk)->nodetype = T_X;
592 qnodes_at(qs, sk)->segnum = segnum;
593 qnodes_at(qs, sk)->left = i1;
594 qnodes_at(qs, sk)->right = i2;
595
596 qnodes_at(qs, i1)->nodetype = T_SINK; // left trapezoid (use existing one)
597 qnodes_at(qs, i1)->trnum = t;
598 qnodes_at(qs, i1)->parent = sk;
599
600 qnodes_at(qs, i2)->nodetype = T_SINK; // right trapezoid (allocate new)
601 const size_t tn = newtrap(tr);
602 qnodes_at(qs, i2)->trnum = tn;
603 tr->data[tn].state = ST_VALID;
604 qnodes_at(qs, i2)->parent = sk;
605
606 if (t == tfirst)
607 tfirstr = tn;
608 if (equal_to(tr->data[t].lo, tr->data[tlast].lo))
609 tlastr = tn;
610
611 tr->data[tn] = tr->data[t];
612 tr->data[t].sink = i1;
613 tr->data[tn].sink = i2;
614 const size_t t_sav = t;
615 const size_t tn_sav = tn;
616
617 /* error */
618
619 if (!is_valid_trap(tr->data[t].d0) && !is_valid_trap(tr->data[t].d1)) // case cannot arise
620 {
621 fprintf(stderr, "add_segment: error\n");
622 break;
623 }
624
625 /* only one trapezoid below. partition t into two and make the */
626 /* two resulting trapezoids t and tn as the upper neighbours of */
627 /* the sole lower trapezoid */
628
629 else if (is_valid_trap(tr->data[t].d0) && !is_valid_trap(tr->data[t].d1))
630 { /* Only one trapezoid below */
631 update_trapezoid(&s, seg, tr, t, tn);
632
633 if (fp_equal(tr->data[t].lo.y, tr->data[tlast].lo.y) &&
634 fp_equal(tr->data[t].lo.x, tr->data[tlast].lo.x) && tribot)
635 { /* bottom forms a triangle */
636
637 if (is_swapped)
638 tmptriseg = seg[segnum].prev;
639 else
640 tmptriseg = seg[segnum].next;
641
642 if (tmptriseg > 0 && is_left_of(tmptriseg, seg, &s.v0))
643 {
644 /* L-R downward cusp */
645 tr->data[tr->data[t].d0].u0 = t;
646 tr->data[tn].d0 = SIZE_MAX;
647 tr->data[tn].d1 = SIZE_MAX;
648 }
649 else
650 {
651 /* R-L downward cusp */
652 tr->data[tr->data[tn].d0].u1 = tn;
653 tr->data[t].d0 = SIZE_MAX;
654 tr->data[t].d1 = SIZE_MAX;
655 }
656 }
657 else
658 {
659 if (is_valid_trap(tr->data[tr->data[t].d0].u0) && is_valid_trap(tr->data[tr->data[t].d0].u1))
660 {
661 if (tr->data[tr->data[t].d0].u0 == t) /* passes through LHS */
662 {
663 tr->data[tr->data[t].d0].usave = tr->data[tr->data[t].d0].u1;
664 tr->data[tr->data[t].d0].uside = S_LEFT;
665 }
666 else
667 {
668 tr->data[tr->data[t].d0].usave = tr->data[tr->data[t].d0].u0;
669 tr->data[tr->data[t].d0].uside = S_RIGHT;
670 }
671 }
672 tr->data[tr->data[t].d0].u0 = t;
673 tr->data[tr->data[t].d0].u1 = tn;
674 }
675
676 t = tr->data[t].d0;
677 }
678
679
680 else if (!is_valid_trap(tr->data[t].d0) && is_valid_trap(tr->data[t].d1))
681 { /* Only one trapezoid below */
682 update_trapezoid(&s, seg, tr, t, tn);
683
684 if (fp_equal(tr->data[t].lo.y, tr->data[tlast].lo.y) &&
685 fp_equal(tr->data[t].lo.x, tr->data[tlast].lo.x) && tribot)
686 { /* bottom forms a triangle */
687
688 if (is_swapped)
689 tmptriseg = seg[segnum].prev;
690 else
691 tmptriseg = seg[segnum].next;
692
693 if (tmptriseg > 0 && is_left_of(tmptriseg, seg, &s.v0))
694 {
695 /* L-R downward cusp */
696 tr->data[tr->data[t].d1].u0 = t;
697 tr->data[tn].d0 = SIZE_MAX;
698 tr->data[tn].d1 = SIZE_MAX;
699 }
700 else
701 {
702 /* R-L downward cusp */
703 tr->data[tr->data[tn].d1].u1 = tn;
704 tr->data[t].d0 = SIZE_MAX;
705 tr->data[t].d1 = SIZE_MAX;
706 }
707 }
708 else
709 {
710 if (is_valid_trap(tr->data[tr->data[t].d1].u0) && is_valid_trap(tr->data[tr->data[t].d1].u1))
711 {
712 if (tr->data[tr->data[t].d1].u0 == t) /* passes through LHS */
713 {
714 tr->data[tr->data[t].d1].usave = tr->data[tr->data[t].d1].u1;
715 tr->data[tr->data[t].d1].uside = S_LEFT;
716 }
717 else
718 {
719 tr->data[tr->data[t].d1].usave = tr->data[tr->data[t].d1].u0;
720 tr->data[tr->data[t].d1].uside = S_RIGHT;
721 }
722 }
723 tr->data[tr->data[t].d1].u0 = t;
724 tr->data[tr->data[t].d1].u1 = tn;
725 }
726
727 t = tr->data[t].d1;
728 }
729
730 /* two trapezoids below. Find out which one is intersected by */
731 /* this segment and proceed down that one */
732
733 else
734 {
735 double y0, yt;
736 pointf tmppt;
737 size_t tnext;
738 bool i_d0, i_d1;
739
740 i_d0 = i_d1 = false;
741 if (fp_equal(tr->data[t].lo.y, s.v0.y)) {
742 if (tr->data[t].lo.x > s.v0.x)
743 i_d0 = true;
744 else
745 i_d1 = true;
746 }
747 else
748 {
749 tmppt.y = y0 = tr->data[t].lo.y;
750 yt = (y0 - s.v0.y)/(s.v1.y - s.v0.y);
751 tmppt.x = s.v0.x + yt * (s.v1.x - s.v0.x);
752
753 if (less_than(tmppt, tr->data[t].lo))
754 i_d0 = true;
755 else
756 i_d1 = true;
757 }
758
759 /* check continuity from the top so that the lower-neighbour */
760 /* values are properly filled for the upper trapezoid */
761
762 update_trapezoid(&s, seg, tr, t, tn);
763
764 if (fp_equal(tr->data[t].lo.y, tr->data[tlast].lo.y) &&
765 fp_equal(tr->data[t].lo.x, tr->data[tlast].lo.x) && tribot)
766 {
767 /* this case arises only at the lowest trapezoid.. i.e.
768 tlast, if the lower endpoint of the segment is
769 already inserted in the structure */
770
771 tr->data[tr->data[t].d0].u0 = t;
772 tr->data[tr->data[t].d0].u1 = SIZE_MAX;
773 tr->data[tr->data[t].d1].u0 = tn;
774 tr->data[tr->data[t].d1].u1 = SIZE_MAX;
775
776 tr->data[tn].d0 = tr->data[t].d1;
777 tr->data[t].d1 = SIZE_MAX;
778 tr->data[tn].d1 = SIZE_MAX;
779
780 tnext = tr->data[t].d1;
781 }
782 else if (i_d0)
783 /* intersecting d0 */
784 {
785 tr->data[tr->data[t].d0].u0 = t;
786 tr->data[tr->data[t].d0].u1 = tn;
787 tr->data[tr->data[t].d1].u0 = tn;
788 tr->data[tr->data[t].d1].u1 = SIZE_MAX;
789
790 /* new code to determine the bottom neighbours of the */
791 /* newly partitioned trapezoid */
792
793 tr->data[t].d1 = SIZE_MAX;
794
795 tnext = tr->data[t].d0;
796 }
797 else /* intersecting d1 */
798 {
799 tr->data[tr->data[t].d0].u0 = t;
800 tr->data[tr->data[t].d0].u1 = SIZE_MAX;
801 tr->data[tr->data[t].d1].u0 = t;
802 tr->data[tr->data[t].d1].u1 = tn;
803
804 /* new code to determine the bottom neighbours of the */
805 /* newly partitioned trapezoid */
806
807 tr->data[tn].d0 = tr->data[t].d1;
808 tr->data[tn].d1 = SIZE_MAX;
809
810 tnext = tr->data[t].d1;
811 }
812
813 t = tnext;
814 }
815
816 tr->data[t_sav].rseg = segnum;
817 tr->data[tn_sav].lseg = segnum;
818 } /* end-while */
819
820 /* Now combine those trapezoids which share common segments. We can */
821 /* use the pointers to the parent to connect these together. This */
822 /* works only because all these new trapezoids have been formed */
823 /* due to splitting by the segment, and hence have only one parent */
824
825 const size_t tfirstl = tfirst;
826 const size_t tlastl = tlast;
827 merge_trapezoids(segnum, tfirstl, tlastl, S_LEFT, tr, qs);
828 merge_trapezoids(segnum, tfirstr, tlastr, S_RIGHT, tr, qs);
829
830 seg[segnum].is_inserted = true;
831}
832
833/* Update the roots stored for each of the endpoints of the segment.
834 * This is done to speed up the location-query for the endpoint when
835 * the segment is inserted into the trapezoidation subsequently
836 */
837static void
838find_new_roots(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs) {
839 segment_t *s = &seg[segnum];
840
841 if (s->is_inserted) return;
842
843 s->root0 = (size_t)locate_endpoint(&s->v0, &s->v1, s->root0, seg, qs);
844 s->root0 = tr->data[s->root0].sink;
845
846 s->root1 = (size_t)locate_endpoint(&s->v1, &s->v0, s->root1, seg, qs);
847 s->root1 = tr->data[s->root1].sink;
848}
849
850/* Get log*n for given n */
851static int math_logstar_n(int n)
852{
853 int i;
854 double v;
855
856 for (i = 0, v = (double) n; v >= 1; i++)
857 v = log2(v);
858
859 return i - 1;
860}
861
862static int math_N(int n, int h)
863{
864 int i;
865 double v;
866
867 for (i = 0, v = (double) n; i < h; i++)
868 v = log2(v);
869
870 return (int)ceil(1.0 * n / v);
871}
872
873/* Main routine to perform trapezoidation */
874traps_t construct_trapezoids(int nseg, segment_t *seg, int *permute) {
875 int i;
876 int h;
877 int segi = 0;
878
879 // We will append later nodes by expanding this on-demand. First node is a
880 // sentinel.
881 qnodes_t qs = {0};
882 qnodes_append(&qs, (qnode_t){0});
883
884 // First trapezoid is reserved as a sentinel. We will append later
885 // trapezoids by expanding this on-demand.
886 traps_t tr = {.length = 1, .data = gv_calloc(1, sizeof(trap_t))};
887
888 /* Add the first segment and get the query structure and trapezoid */
889 /* list initialised */
890
891 const size_t root = init_query_structure(permute[segi++], seg, &tr, &qs);
892
893 for (i = 1; i <= nseg; i++)
894 seg[i].root0 = seg[i].root1 = root;
895
896 const int logstar = math_logstar_n(nseg);
897 for (h = 1; h <= logstar; h++) {
898 for (i = math_N(nseg, h -1) + 1; i <= math_N(nseg, h); i++)
899 add_segment(permute[segi++], seg, &tr, &qs);
900
901 /* Find a new root for each of the segment endpoints */
902 for (i = 1; i <= nseg; i++)
903 find_new_roots(i, seg, &tr, &qs);
904 }
905
906 for (i = math_N(nseg, logstar) + 1; i <= nseg; i++)
907 add_segment(permute[segi++], seg, &tr, &qs);
908
909 qnodes_free(&qs);
910 return tr;
911}
Memory allocation wrappers that exit on failure.
static void * gv_recalloc(void *ptr, size_t old_nmemb, size_t new_nmemb, size_t size)
Definition alloc.h:73
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
#define right(i)
Definition closest.c:79
#define left
Definition dthdr.h:12
geometric types and macros (e.g. points and boxes)
#define SIZE_MAX
Definition gmlscan.c:347
Arithmetic helper functions.
#define SWAP(a, b)
Definition gv_math.h:130
#define DEFINE_LIST(name, type)
Definition list.h:22
double x
Definition geom.h:29
double y
Definition geom.h:29
int segnum
Definition trapezoid.c:55
size_t parent
doubly linked DAG
Definition trapezoid.c:58
size_t right
children
Definition trapezoid.c:59
size_t trnum
Definition trapezoid.c:57
int nodetype
Definition trapezoid.c:54
size_t left
Definition trapezoid.c:59
pointf yval
Definition trapezoid.c:56
pointf v0
Definition trap.h:29
int prev
Definition trap.h:33
int next
Definition trap.h:32
pointf v1
Definition trap.h:29
bool is_inserted
Definition trap.h:30
Definition trap.h:39
size_t d1
Definition trap.h:43
int rseg
Definition trap.h:40
size_t sink
pointer to corresponding in Q
Definition trap.h:44
pointf lo
Definition trap.h:41
size_t d0
Definition trap.h:43
int state
Definition trap.h:47
size_t usave
I forgot what this means.
Definition trap.h:45
size_t u1
Definition trap.h:42
pointf hi
Definition trap.h:41
size_t u0
Definition trap.h:42
int uside
I forgot what this means.
Definition trap.h:46
int lseg
Definition trap.h:40
an array of trapezoids
Definition trap.h:60
size_t length
Definition trap.h:61
trap_t * data
Definition trap.h:62
trapezoid elements and utilities for partition.c
#define ST_INVALID
Definition trap.h:66
static bool is_valid_trap(size_t index)
Definition trap.h:55
static bool equal_to(pointf v0, pointf v1)
Definition trap.h:93
static bool greater_than(pointf v0, pointf v1)
Definition trap.h:97
#define C_EPS
Definition trap.h:68
static bool fp_equal(double s, double t)
Definition trap.h:74
#define ST_VALID
Definition trap.h:65
static bool less_than(pointf v0, pointf v1)
Definition trapezoid.c:106
#define T_Y
Definition trapezoid.c:39
#define INF
Definition trapezoid.c:48
static size_t locate_endpoint(pointf *v, pointf *vo, size_t r, segment_t *seg, qnodes_t *qs)
Definition trapezoid.c:270
#define S_LEFT
Definition trapezoid.c:45
static pointf max_(pointf v0, pointf v1)
return the maximum of the two points
Definition trapezoid.c:79
#define T_X
Definition trapezoid.c:38
static int math_logstar_n(int n)
Definition trapezoid.c:851
static int math_N(int n, int h)
Definition trapezoid.c:862
static void update_trapezoid(segment_t *s, segment_t *seg, traps_t *tr, size_t t, size_t tn)
Definition trapezoid.c:377
#define FIRSTPT
Definition trapezoid.c:42
#define LASTPT
Definition trapezoid.c:43
static bool greater_than_equal_to(pointf v0, pointf v1)
Definition trapezoid.c:102
static void merge_trapezoids(int segnum, size_t tfirst, size_t tlast, int side, traps_t *tr, qnodes_t *qs)
Definition trapezoid.c:317
#define CROSS(v0, v1, v2)
Definition trapezoid.c:50
static void find_new_roots(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs)
Definition trapezoid.c:838
traps_t construct_trapezoids(int nseg, segment_t *seg, int *permute)
Definition trapezoid.c:874
static pointf min_(pointf v0, pointf v1)
return the minimum of the two points
Definition trapezoid.c:91
#define S_RIGHT
Definition trapezoid.c:46
static size_t newnode(qnodes_t *qs)
an array of qnodes
Definition trapezoid.c:66
static size_t init_query_structure(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs)
Definition trapezoid.c:123
static bool inserted(int segnum, segment_t *seg, int whichpt)
Definition trapezoid.c:259
static bool is_left_of(int segnum, segment_t *seg, pointf *v)
Definition trapezoid.c:214
static void add_segment(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs)
Definition trapezoid.c:449
static size_t newtrap(traps_t *tr)
Definition trapezoid.c:72
#define T_SINK
Definition trapezoid.c:40
graphs, nodes and edges info: Agraphinfo_t, Agnodeinfo_t and Agedgeinfo_t
Definition grammar.c:93
#define UNREACHABLE()
Definition unreachable.h:30