Graphviz 13.0.0~dev.20250402.0402
Loading...
Searching...
No Matches
Multilevel.c
Go to the documentation of this file.
1/*************************************************************************
2 * Copyright (c) 2011 AT&T Intellectual Property
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * https://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors: Details at https://graphviz.org
9 *************************************************************************/
10
11#include <sfdpgen/Multilevel.h>
12#include <assert.h>
13#include <common/arith.h>
14#include <stddef.h>
15#include <stdbool.h>
16#include <util/alloc.h>
17#include <util/random.h>
18
19static const int minsize = 4;
20static const double min_coarsen_factor = 0.75;
21
23 if (!A) return NULL;
24 assert(A->m == A->n);
25 Multilevel grid = gv_alloc(sizeof(struct Multilevel_struct));
26 grid->level = 0;
27 grid->n = A->n;
28 grid->A = A;
29 grid->P = NULL;
30 grid->R = NULL;
31 grid->next = NULL;
32 grid->prev = NULL;
33 grid->delete_top_level_A = false;
34 return grid;
35}
36
38 if (!grid) return;
39 if (grid->A){
40 if (grid->level == 0) {
41 if (grid->delete_top_level_A) {
43 }
44 } else {
46 }
47 }
51 free(grid);
52}
53
54static void maximal_independent_edge_set_heavest_edge_pernode_supernodes_first(SparseMatrix A, int **cluster, int **clusterp, int *ncluster){
55 int i, ii, j, *ia, *ja, m, n;
56 (void)n;
57 double *a, amax = 0;
58 int jamax = 0;
59 int *matched, nz, nz0;
60 enum {MATCHED = -1};
61 int nsuper, *super = NULL, *superp = NULL;
62
63 assert(A);
64 assert(A->is_pattern_symmetric);
65 ia = A->ia;
66 ja = A->ja;
67 m = A->m;
68 n = A->n;
69 assert(n == m);
70 *cluster = gv_calloc(m, sizeof(int));
71 *clusterp = gv_calloc(m + 1, sizeof(int));
72 matched = gv_calloc(m, sizeof(int));
73
74 for (i = 0; i < m; i++) matched[i] = i;
75
76 assert(SparseMatrix_is_symmetric(A, false));
77 assert(A->type == MATRIX_TYPE_REAL);
78
79 SparseMatrix_decompose_to_supervariables(A, &nsuper, &super, &superp);
80
81 *ncluster = 0;
82 (*clusterp)[0] = 0;
83 nz = 0;
84 a = A->a;
85
86 for (i = 0; i < nsuper; i++){
87 if (superp[i+1] - superp[i] <= 1) continue;
88 nz0 = (*clusterp)[*ncluster];
89 for (j = superp[i]; j < superp[i+1]; j++){
90 matched[super[j]] = MATCHED;
91 (*cluster)[nz++] = super[j];
92 if (nz - nz0 >= MAX_CLUSTER_SIZE){
93 (*clusterp)[++(*ncluster)] = nz;
94 nz0 = nz;
95 }
96 }
97 if (nz > nz0) (*clusterp)[++(*ncluster)] = nz;
98 }
99
100 int *const p = gv_permutation(m);
101 for (ii = 0; ii < m; ii++){
102 i = p[ii];
103 bool first = true;
104 if (matched[i] == MATCHED) continue;
105 for (j = ia[i]; j < ia[i+1]; j++){
106 if (i == ja[j]) continue;
107 if (matched[ja[j]] != MATCHED && matched[i] != MATCHED){
108 if (first) {
109 amax = a[j];
110 jamax = ja[j];
111 first = false;
112 } else {
113 if (a[j] > amax){
114 amax = a[j];
115 jamax = ja[j];
116 }
117 }
118 }
119 }
120 if (!first){
121 matched[jamax] = MATCHED;
122 matched[i] = MATCHED;
123 (*cluster)[nz++] = i;
124 (*cluster)[nz++] = jamax;
125 (*clusterp)[++(*ncluster)] = nz;
126 }
127 }
128
129 for (i = 0; i < m; i++){
130 if (matched[i] == i){
131 (*cluster)[nz++] = i;
132 (*clusterp)[++(*ncluster)] = nz;
133 }
134 }
135 free(p);
136
137 free(super);
138
139 free(superp);
140
141 free(matched);
142}
143
145 SparseMatrix *P, SparseMatrix *R) {
146 int nc, nzc, n, i;
147 int *irn = NULL, *jcn = NULL;
148 double *val = NULL;
149 int j;
150 int *cluster=NULL, *clusterp=NULL, ncluster;
151
152 assert(A->m == A->n);
153 *cA = NULL;
154 *P = NULL;
155 *R = NULL;
156 n = A->m;
157
159 assert(ncluster <= n);
160 nc = ncluster;
161 if (nc == n || nc < minsize) {
162#ifdef DEBUG_PRINT
163 if (Verbose)
164 fprintf(stderr, "nc = %d, nf = %d, minsz = %d, coarsen_factor = %f coarsening stops\n",nc, n, minsize, min_coarsen_factor);
165#endif
166 goto RETURN;
167 }
168 irn = gv_calloc(n, sizeof(int));
169 jcn = gv_calloc(n, sizeof(int));
170 val = gv_calloc(n, sizeof(double));
171 nzc = 0;
172 for (i = 0; i < ncluster; i++){
173 for (j = clusterp[i]; j < clusterp[i+1]; j++){
174 assert(clusterp[i+1] > clusterp[i]);
175 irn[nzc] = cluster[j];
176 jcn[nzc] = i;
177 val[nzc++] = 1.;
178 }
179 }
180 assert(nzc == n);
181 *P = SparseMatrix_from_coordinate_arrays(nzc, n, nc, irn, jcn, val,
182 MATRIX_TYPE_REAL, sizeof(double));
183 *R = SparseMatrix_transpose(*P);
184
185 *cA = SparseMatrix_multiply3(*R, A, *P);
186 if (!*cA) goto RETURN;
187
189 (*cA)->is_symmetric = true;
190 (*cA)->is_pattern_symmetric = true;
192
193 RETURN:
194 free(irn);
195 free(jcn);
196 free(val);
197
198 free(cluster);
199 free(clusterp);
200}
201
203 SparseMatrix *P, SparseMatrix *R) {
204 SparseMatrix cA0 = A, P0 = NULL, R0 = NULL, M;
205 int nc = 0, n;
206
207 *P = NULL; *R = NULL; *cA = NULL;
208
209 n = A->n;
210
211 do {/* this loop force a sufficient reduction */
212 Multilevel_coarsen_internal(A, &cA0, &P0, &R0);
213 if (!cA0) return;
214 nc = cA0->n;
215#ifdef DEBUG_PRINT
216 if (Verbose) fprintf(stderr,"nc=%d n = %d\n",nc,n);
217#endif
218 if (*P){
219 assert(*R);
220 M = SparseMatrix_multiply(*P, P0);
223 *P = M;
224 M = SparseMatrix_multiply(R0, *R);
227 *R = M;
228 } else {
229 *P = P0;
230 *R = R0;
231 }
232
233 if (*cA) SparseMatrix_delete(*cA);
234 *cA = cA0;
235
236 A = cA0;
237 } while (nc > min_coarsen_factor*n);
238
239}
240
241void print_padding(int n){
242 int i;
243 for (i = 0; i < n; i++) fputs (" ", stderr);
244}
245
247 const Multilevel_control ctrl) {
248 Multilevel cgrid;
249 SparseMatrix P, R, A, cA;
250
251#ifdef DEBUG_PRINT
252 if (Verbose) {
253 print_padding(grid->level);
254 fprintf(stderr, "level -- %d, n = %d, nz = %d nz/n = %f\n", grid->level, grid->n, grid->A->nz, grid->A->nz/(double) grid->n);
255 }
256#endif
257 A = grid->A;
258 if (grid->level >= ctrl.maxlevel - 1) {
259#ifdef DEBUG_PRINT
260 if (Verbose) {
261 print_padding(grid->level);
262 fprintf(stderr, " maxlevel reached, coarsening stops\n");
263 }
264#endif
265 return grid;
266 }
267 Multilevel_coarsen(A, &cA, &P, &R);
268 if (!cA) return grid;
269
270 cgrid = Multilevel_init(cA);
271 grid->next = cgrid;
272 cgrid->level = grid->level + 1;
273 cgrid->n = cA->m;
274 cgrid->P = P;
275 grid->R = R;
276 cgrid->prev = grid;
277 cgrid = Multilevel_establish(cgrid, ctrl);
278 return grid;
279
280}
281
283 const Multilevel_control ctrl) {
284 /* A: the weighting matrix. D: the distance matrix, could be NULL. If not null, the two matrices must have the same sparsity pattern */
286 SparseMatrix A = A0;
287
288 if (!SparseMatrix_is_symmetric(A, false) || A->type != MATRIX_TYPE_REAL){
290 }
293 if (A != A0) grid->delete_top_level_A = true; // be sure to clean up later
294 return grid;
295}
296
297
299 while (grid->next){
300 grid = grid->next;
301 }
302 return grid;
303}
304
void print_padding(int n)
Definition Multilevel.c:241
static const double min_coarsen_factor
Definition Multilevel.c:20
Multilevel Multilevel_get_coarsest(Multilevel grid)
Definition Multilevel.c:298
static void maximal_independent_edge_set_heavest_edge_pernode_supernodes_first(SparseMatrix A, int **cluster, int **clusterp, int *ncluster)
Definition Multilevel.c:54
void Multilevel_delete(Multilevel grid)
Definition Multilevel.c:37
static void Multilevel_coarsen(SparseMatrix A, SparseMatrix *cA, SparseMatrix *P, SparseMatrix *R)
Definition Multilevel.c:202
static Multilevel Multilevel_init(SparseMatrix A)
Definition Multilevel.c:22
static Multilevel Multilevel_establish(Multilevel grid, const Multilevel_control ctrl)
Definition Multilevel.c:246
Multilevel Multilevel_new(SparseMatrix A0, const Multilevel_control ctrl)
Definition Multilevel.c:282
static void Multilevel_coarsen_internal(SparseMatrix A, SparseMatrix *cA, SparseMatrix *P, SparseMatrix *R)
Definition Multilevel.c:144
static const int minsize
Definition Multilevel.c:19
@ MAX_CLUSTER_SIZE
Definition Multilevel.h:29
void SparseMatrix_decompose_to_supervariables(SparseMatrix A, int *ncluster, int **cluster, int **clusterp)
SparseMatrix SparseMatrix_transpose(SparseMatrix A)
bool SparseMatrix_is_symmetric(SparseMatrix A, bool test_pattern_symmetry_only)
SparseMatrix SparseMatrix_multiply(SparseMatrix A, SparseMatrix B)
SparseMatrix SparseMatrix_divide_row_by_degree(SparseMatrix A)
SparseMatrix SparseMatrix_from_coordinate_arrays(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz)
void SparseMatrix_delete(SparseMatrix A)
SparseMatrix SparseMatrix_get_real_adjacency_matrix_symmetrized(SparseMatrix A)
SparseMatrix SparseMatrix_multiply3(SparseMatrix A, SparseMatrix B, SparseMatrix C)
SparseMatrix SparseMatrix_remove_diagonal(SparseMatrix A)
@ MATRIX_TYPE_REAL
Memory allocation wrappers that exit on failure.
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
static void * gv_alloc(size_t size)
Definition alloc.h:47
#define A(n, t)
Definition expr.h:76
static bool Verbose
Definition gml2gv.c:23
void free(void *)
node NULL
Definition grammar.y:163
@ grid
Definition gvgen.c:33
int * gv_permutation(int bound)
Definition random.c:13
random number generation
#define M
Definition randomkit.c:90
#define RETURN(v)
Definition strmatch.c:144
SparseMatrix P
Definition Multilevel.h:22
Multilevel next
Definition Multilevel.h:24
Multilevel prev
Definition Multilevel.h:25