Graphviz 13.0.0~dev.20250121.0651
Loading...
Searching...
No Matches
graph.c
Go to the documentation of this file.
1
6/*************************************************************************
7 * Copyright (c) 2011 AT&T Intellectual Property
8 * All rights reserved. This program and the accompanying materials
9 * are made available under the terms of the Eclipse Public License v1.0
10 * which accompanies this distribution, and is available at
11 * https://www.eclipse.org/legal/epl-v10.html
12 *
13 * Contributors: Details at https://graphviz.org
14 *************************************************************************/
15
16#include <assert.h>
17#include <cgraph/cghdr.h>
18#include <cgraph/node_set.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <stdlib.h>
22#include <util/alloc.h>
23
25
26/*
27 * this code sets up the resource management discipline
28 * and returns a new main graph struct.
29 */
30static Agclos_t *agclos(Agdisc_t * proto)
31{
32 Agclos_t *rv;
33
34 /* establish an allocation arena */
35 rv = gv_calloc(1, sizeof(Agclos_t));
36 rv->disc.id = ((proto && proto->id) ? proto->id : &AgIdDisc);
37 rv->disc.io = ((proto && proto->io) ? proto->io : &AgIoDisc);
38 return rv;
39}
40
41/*
42 * Open a new main graph with the given descriptor (directed, strict, etc.)
43 */
44Agraph_t *agopen(char *name, Agdesc_t desc, Agdisc_t * arg_disc)
45{
46 Agraph_t *g;
47 Agclos_t *clos;
48 IDTYPE gid;
49
50 clos = agclos(arg_disc);
51 g = gv_calloc(1, sizeof(Agraph_t));
52 AGTYPE(g) = AGRAPH;
53 g->clos = clos;
54 g->desc = desc;
55 g->desc.maingraph = true;
56 g->root = g;
57 g->clos->state.id = g->clos->disc.id->open(g, arg_disc);
58 if (agmapnametoid(g, AGRAPH, name, &gid, true))
59 AGID(g) = gid;
60 g = agopen1(g);
61 agregister(g, AGRAPH, g);
62 return g;
63}
64
65/*
66 * initialize dictionaries, set seq, invoke init method of new graph
67 */
69{
70 Agraph_t *par;
71
73 g->n_id = node_set_new();
77 g->g_seq2 = gv_alloc(sizeof(Agraphs_t));
78
80
81 par = agparent(g);
82 if (par) {
83 uint64_t seq = agnextseq(par, AGRAPH);
84 assert((seq & SEQ_MASK) == seq && "sequence ID overflow");
85 AGSEQ(g) = seq & SEQ_MASK;
86 dtinsert(par->g_seq, g);
87 Agraphs_append(par->g_seq2, g);
88 dtinsert(par->g_id, g);
89 }
90 if (!par || par->desc.has_attrs)
92 agmethod_init(g, g);
93 return g;
94}
95
96/*
97 * Close a graph or subgraph, freeing its storage.
98 */
100{
101 Agraph_t *subg, *next_subg, *par;
102 Agnode_t *n, *next_n;
103
104 par = agparent(g);
105
106 for (subg = agfstsubg(g); subg; subg = next_subg) {
107 next_subg = agnxtsubg(subg);
108 agclose(subg);
109 }
110
111 for (n = agfstnode(g); n; n = next_n) {
112 next_n = agnxtnode(g, n);
113 agdelnode(g, n);
114 }
115
117 agmethod_delete(g, g);
118
119 assert(node_set_is_empty(g->n_id));
120 node_set_free(&g->n_id);
121 assert(dtsize(g->n_seq) == 0);
122 if (agdtclose(g, g->n_seq)) return FAILURE;
123
124 assert(dtsize(g->e_id) == 0);
125 if (agdtclose(g, g->e_id)) return FAILURE;
126 assert(dtsize(g->e_seq) == 0);
127 if (agdtclose(g, g->e_seq)) return FAILURE;
128
129 assert(Agraphs_is_empty(g->g_seq2));
130 Agraphs_free(g->g_seq2);
131 free(g->g_seq2);
132
133 assert(dtsize(g->g_seq) == 0);
134 if (agdtclose(g, g->g_seq)) return FAILURE;
135
136 assert(dtsize(g->g_id) == 0);
137 if (agdtclose(g, g->g_id)) return FAILURE;
138
139 if (g->desc.has_attrs)
140 if (agraphattr_delete(g)) return FAILURE;
141 agrecclose((Agobj_t *) g);
142 agfreeid(g, AGRAPH, AGID(g));
143
144 if (par) {
145 agdelsubg(par, g);
146 free(g);
147 } else {
148 void *clos;
149 while (g->clos->cb)
150 agpopdisc(g, g->clos->cb->f);
151 AGDISC(g, id)->close(AGCLOS(g, id));
152 if (agstrclose(g)) return FAILURE;
153 clos = g->clos;
154 free(g);
155 free(clos);
156 }
157 return SUCCESS;
158}
159
160uint64_t agnextseq(Agraph_t * g, int objtype)
161{
162 return ++(g->clos->seq[objtype]);
163}
164
166{
167 assert(node_set_size(g->n_id) <= INT_MAX);
168 return (int)node_set_size(g->n_id);
169}
170
172{
173 Agnode_t *n;
174 int rv = 0;
175
176 for (n = agfstnode(g); n; n = agnxtnode(g, n))
177 rv += agdegree(g, n, 0, 1); /* must use OUT to get self-arcs */
178 return rv;
179}
180
182{
183 return dtsize(g->g_seq);
184}
185
187{
188 return g->desc.directed;
189}
190
192{
193 return !agisdirected(g);
194}
195
197{
198 return g->desc.strict;
199}
200
202{
203 return (g->desc.strict && g->desc.no_loop);
204}
205
206static int cnt(Dict_t * d, Dtlink_t ** set)
207{
208 int rv;
209 dtrestore(d, *set);
210 rv = dtsize(d);
211 *set = dtextract(d);
212 return rv;
213}
214
215int agcountuniqedges(Agraph_t * g, Agnode_t * n, int want_in, int want_out)
216{
217 Agedge_t *e;
218 Agsubnode_t *sn;
219 int rv = 0;
220
221 sn = agsubrep(g, n);
222 if (want_out) rv = cnt(g->e_seq,&(sn->out_seq));
223 if (want_in) {
224 if (!want_out) rv += cnt(g->e_seq,&(sn->in_seq)); /* cheap */
225 else { /* less cheap */
226 for (e = agfstin(g, n); e; e = agnxtin(g, e))
227 if (e->node != n) rv++; /* don't double count loops */
228 }
229 }
230 return rv;
231}
232
233int agdegree(Agraph_t * g, Agnode_t * n, int want_in, int want_out)
234{
235 Agsubnode_t *sn;
236 int rv = 0;
237
238 sn = agsubrep(g, n);
239 if (sn) {
240 if (want_out) rv += cnt(g->e_seq,&(sn->out_seq));
241 if (want_in) rv += cnt(g->e_seq,&(sn->in_seq));
242 }
243 return rv;
244}
245
246static int agraphseqcmpf(void *arg0, void *arg1) {
247 Agraph_t *sg0 = arg0;
248 Agraph_t *sg1 = arg1;
249 if (AGSEQ(sg0) < AGSEQ(sg1)) {
250 return -1;
251 }
252 if (AGSEQ(sg0) > AGSEQ(sg1)) {
253 return 1;
254 }
255 return 0;
256}
257
258static int agraphidcmpf(void *arg0, void *arg1) {
259 Agraph_t *sg0 = arg0;
260 Agraph_t *sg1 = arg1;
261 if (AGID(sg0) < AGID(sg1)) {
262 return -1;
263 }
264 if (AGID(sg0) > AGID(sg1)) {
265 return 1;
266 }
267 return 0;
268}
269
271 .link = offsetof(Agraph_t, seq_link), // link offset
272 .comparf = agraphseqcmpf,
273};
274
276 .link = offsetof(Agraph_t, id_link), // link offset
277 .comparf = agraphidcmpf,
278};
279
280Agdesc_t Agdirected = {.directed = true, .maingraph = true};
281Agdesc_t Agstrictdirected = {.directed = true, .strict = true, .maingraph = true};
283Agdesc_t Agstrictundirected = {.strict = true, .maingraph = true};
284
286
Memory allocation wrappers that exit on failure.
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
static void * gv_alloc(size_t size)
Definition alloc.h:47
CDT_API Dtlink_t * dtextract(Dt_t *)
Definition dtextract.c:9
CDT_API int dtsize(Dt_t *)
Definition dtsize.c:12
#define dtinsert(d, o)
Definition cdt.h:185
CDT_API Dtmethod_t * Dttree
Definition dttree.c:308
CDT_API int dtrestore(Dt_t *, Dtlink_t *)
Definition dtrestore.c:11
cgraph.h additions
void agfreeid(Agraph_t *g, int objtype, IDTYPE id)
Definition id.c:131
int agstrclose(Agraph_t *g)
Definition refstr.c:322
void aginternalmapclose(Agraph_t *g)
Definition imap.c:196
void agrecclose(Agobj_t *obj)
Definition rec.c:227
Dtdisc_t Ag_subnode_seq_disc
Definition node.c:306
int agmapnametoid(Agraph_t *g, int objtype, char *str, IDTYPE *result, bool createflag)
Definition id.c:102
Dict_t * agdtopen(Dtdisc_t *disc, Dtmethod_t *method)
Definition utils.c:21
Dtdisc_t Ag_subedge_seq_disc
Definition edge.c:411
#define FAILURE
Definition cghdr.h:45
#define AGDISC(g, d)
Definition cghdr.h:48
Dtdisc_t Ag_mainedge_seq_disc
Definition edge.c:406
void agregister(Agraph_t *g, int objtype, void *obj)
Definition id.c:170
#define SUCCESS
Definition cghdr.h:44
#define AGCLOS(g, d)
Definition cghdr.h:49
Dtdisc_t Ag_subedge_id_disc
Definition edge.c:422
Dtdisc_t Ag_mainedge_id_disc
Definition edge.c:417
@ SEQ_MASK
Definition cghdr.h:74
int agdtclose(Agraph_t *g, Dict_t *dict)
Definition utils.c:31
void node_set_free(node_set_t **self)
Definition node.c:552
size_t node_set_size(const node_set_t *self)
Definition node.c:547
node_set_t * node_set_new(void)
Definition node.c:408
void free(void *)
static int agraphidcmpf(void *arg0, void *arg1)
Definition graph.c:258
static int cnt(Dict_t *d, Dtlink_t **set)
Definition graph.c:206
static Agclos_t * agclos(Agdisc_t *proto)
Definition graph.c:30
Agraph_t * agopen1(Agraph_t *g)
Definition graph.c:68
Agraph_t * Ag_G_global
Definition graph.c:24
uint64_t agnextseq(Agraph_t *g, int objtype)
Definition graph.c:160
static int agraphseqcmpf(void *arg0, void *arg1)
Definition graph.c:246
Dtdisc_t Ag_subgraph_seq_disc
Definition graph.c:270
Dtdisc_t Ag_subgraph_id_disc
Definition graph.c:275
int agnsubg(Agraph_t *g)
Definition graph.c:181
int agcountuniqedges(Agraph_t *g, Agnode_t *n, int want_in, int want_out)
Definition graph.c:215
int agnedges(Agraph_t *g)
Definition graph.c:171
int agdegree(Agraph_t *g, Agnode_t *n, int want_in, int want_out)
Definition graph.c:233
int agnnodes(Agraph_t *g)
Definition graph.c:165
void agraphattr_init(Agraph_t *g)
Definition attr.c:396
int agraphattr_delete(Agraph_t *g)
Definition attr.c:407
int agpopdisc(Agraph_t *g, Agcbdisc_t *disc)
Definition obj.c:211
void agmethod_delete(Agraph_t *g, void *obj)
Definition obj.c:138
void agmethod_init(Agraph_t *g, void *obj)
Definition obj.c:78
Agdisc_t AgDefaultDisc
Definition graph.c:285
Agiddisc_t AgIdDisc
Definition id.c:91
Agiodisc_t AgIoDisc
Definition io.c:39
Agedge_t * agnxtin(Agraph_t *g, Agedge_t *e)
Definition edge.c:69
Agedge_t * agfstin(Agraph_t *g, Agnode_t *n)
Definition edge.c:55
Agdesc_t Agundirected
undirected
Definition graph.c:282
int agisdirected(Agraph_t *g)
Definition graph.c:186
Agdesc_t Agstrictundirected
strict undirected
Definition graph.c:283
int agclose(Agraph_t *g)
deletes a graph, freeing its associated storage
Definition graph.c:99
int agisstrict(Agraph_t *g)
Definition graph.c:196
int agissimple(Agraph_t *g)
Definition graph.c:201
Agdesc_t Agstrictdirected
strict directed. A strict graph cannot have multi-edges or self-arcs.
Definition graph.c:281
Agraph_t * agopen(char *name, Agdesc_t desc, Agdisc_t *arg_disc)
creates a new graph with the given name and kind
Definition graph.c:44
int agisundirected(Agraph_t *g)
Definition graph.c:191
Agdesc_t Agdirected
directed
Definition graph.c:280
Agnode_t * agnxtnode(Agraph_t *g, Agnode_t *n)
Definition node.c:47
Agnode_t * agfstnode(Agraph_t *g)
Definition node.c:40
int agdelnode(Agraph_t *g, Agnode_t *arg_n)
removes a node from a graph or subgraph.
Definition node.c:190
Agsubnode_t * agsubrep(Agraph_t *g, Agnode_t *n)
Definition edge.c:145
#define AGID(obj)
returns the unique integer ID associated with the object
Definition cgraph.h:221
uint64_t IDTYPE
unique per main graph ID
Definition cgraph.h:73
#define AGTYPE(obj)
returns AGRAPH, AGNODE, or AGEDGE depending on the type of the object
Definition cgraph.h:216
Agraph_t * agroot(void *obj)
Definition obj.c:168
#define AGSEQ(obj)
Definition cgraph.h:225
@ AGRAPH
Definition cgraph.h:207
Agraph_t * agparent(Agraph_t *g)
Definition subg.c:88
Agraph_t * agfstsubg(Agraph_t *g)
Definition subg.c:75
Agraph_t * agnxtsubg(Agraph_t *subg)
Definition subg.c:80
int agdelsubg(Agraph_t *g, Agraph_t *sub)
Definition subg.c:96
unordered set of Agsubnode_t *
static bool node_set_is_empty(const node_set_t *self)
Definition node_set.h:55
Agcbdisc_t * f
Definition cgraph.h:399
shared resources for Agraph_s
Definition cgraph.h:410
Agdisc_t disc
Definition cgraph.h:411
Agdstate_t state
Definition cgraph.h:412
Agcbstack_t * cb
Definition cgraph.h:415
uint64_t seq[3]
Definition cgraph.h:414
graph descriptor
Definition cgraph.h:284
unsigned has_attrs
Definition cgraph.h:290
unsigned maingraph
Definition cgraph.h:288
unsigned no_loop
Definition cgraph.h:287
unsigned strict
Definition cgraph.h:286
unsigned directed
Definition cgraph.h:285
user's discipline
Definition cgraph.h:336
Agiddisc_t * id
Definition cgraph.h:337
Agiodisc_t * io
Definition cgraph.h:338
void * id
Definition cgraph.h:363
Agnode_t * node
Definition cgraph.h:272
void *(* open)(Agraph_t *g, Agdisc_t *)
Definition cgraph.h:317
a generic header of Agraph_s, Agnode_s and Agedge_s
Definition cgraph.h:210
graph or subgraph
Definition cgraph.h:424
struct graphviz_node_set * n_id
the node set indexed by ID
Definition cgraph.h:430
Dict_t * g_seq
Definition cgraph.h:432
Agraph_t * root
subgraphs - ancestors
Definition cgraph.h:438
Dict_t * g_id
Definition cgraph.h:432
Dict_t * e_seq
Definition cgraph.h:431
Dict_t * n_seq
the node set in sequence
Definition cgraph.h:429
Agclos_t * clos
shared resources
Definition cgraph.h:439
Agdesc_t desc
Definition cgraph.h:426
Dict_t * e_id
holders for edge sets
Definition cgraph.h:431
void * g_seq2
Definition cgraph.h:437
This is the node struct allocated per graph (or subgraph).
Definition cgraph.h:251
Dtlink_t * out_seq
Definition cgraph.h:256
Dtlink_t * in_seq
Definition cgraph.h:256
Definition cdt.h:100
int link
Definition cdt.h:87