Graphviz 13.0.0~dev.20250402.0402
Loading...
Searching...
No Matches
partition.c
Go to the documentation of this file.
1/*************************************************************************
2 * Copyright (c) 2011 AT&T Intellectual Property
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * https://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors: Details at https://graphviz.org
9 *************************************************************************/
10
11#include "config.h"
12#include <assert.h>
13#include <common/boxes.h>
14#include <limits.h>
15#include <ortho/partition.h>
16#include <ortho/trap.h>
17#include <math.h>
18#include <stdbool.h>
19#include <stdint.h>
20#include <stdio.h>
21#include <stdlib.h>
22#include <util/alloc.h>
23#include <util/bitarray.h>
24#include <util/gv_math.h>
25#include <util/prisize_t.h>
26
27#ifndef DEBUG
28 #define DEBUG 0
29#endif
30
31#define NPOINTS 4 /* only rectangles */
32
33#define TR_FROM_UP 1 /* for traverse-direction */
34#define TR_FROM_DN 2
35
36#define SP_SIMPLE_LRUP 1 /* for splitting trapezoids */
37#define SP_SIMPLE_LRDN 2
38#define SP_2UP_2DN 3
39#define SP_2UP_LEFT 4
40#define SP_2UP_RIGHT 5
41#define SP_2DN_LEFT 6
42#define SP_2DN_RIGHT 7
43#define SP_NOSPLIT -1
44
45#define DOT(v0, v1) ((v0).x * (v1).x + (v0).y * (v1).y)
46#define CROSS_SINE(v0, v1) ((v0).x * (v1).y - (v1).x * (v0).y)
47#define LENGTH(v0) hypot((v0).x, (v0).y)
48
49#ifndef HAVE_SRAND48
50#define srand48 srand
51#endif
52#ifdef _WIN32
53extern double drand48(void);
54#endif
55
56typedef struct {
57 int vnum;
58 int next; /* Circularly linked list */
59 int prev; /* describing the monotone */
60 int marked; /* polygon */
62
63typedef struct {
65 int vnext[4]; /* next vertices for the 4 chains */
66 int vpos[4]; /* position of v in the 4 chains */
69
70static int chain_idx;
71static size_t mon_idx;
72 /* Table to hold all the monotone */
73 /* polygons . Each monotone polygon */
74 /* is a circularly linked list */
76 /* chain init. information. This */
77 /* is used to decide which */
78 /* monotone polygon to split if */
79 /* there are several other */
80 /* polygons touching at the same */
81 /* vertex */
83 /* contains position of any vertex in */
84 /* the monotone chain for the polygon */
85static int* mon;
86
87/* return a new mon structure from the table */
88#define newmon() (++mon_idx)
89/* return a new chain element from the table */
90#define new_chain_element() (++chain_idx)
91
92static void
93convert (boxf bb, int flip, int ccw, pointf* pts)
94{
95 pts[0] = bb.LL;
96 pts[2] = bb.UR;
97 if (ccw) {
98 pts[1].x = bb.UR.x;
99 pts[1].y = bb.LL.y;
100 pts[3].x = bb.LL.x;
101 pts[3].y = bb.UR.y;
102 }
103 else {
104 pts[1].x = bb.LL.x;
105 pts[1].y = bb.UR.y;
106 pts[3].x = bb.UR.x;
107 pts[3].y = bb.LL.y;
108 }
109 if (flip) {
110 int i;
111 for (i = 0; i < NPOINTS; i++) {
112 double tmp = pts[i].y;
113 pts[i].y = pts[i].x;
114 pts[i].x = -tmp;
115 }
116 }
117}
118
119static int
120store (segment_t* seg, int first, pointf* pts)
121{
122 int i, last = first + NPOINTS - 1;
123 int j = 0;
124
125 for (i = first; i <= last; i++, j++) {
126 if (i == first) {
127 seg[i].next = first+1;
128 seg[i].prev = last;
129 }
130 else if (i == last) {
131 seg[i].next = first;
132 seg[i].prev = last-1;
133 }
134 else {
135 seg[i].next = i+1;
136 seg[i].prev = i-1;
137 }
138 seg[i].is_inserted = false;
139 seg[seg[i].prev].v1 = seg[i].v0 = pts[j];
140 }
141 return (last+1);
142}
143
144static void genSegments(cell *cells, size_t ncells, boxf bb, segment_t *seg,
145 int flip) {
146 int i = 1;
147 pointf pts[4];
148
149 convert (bb, flip, 1, pts);
150 i = store (seg, i, pts);
151 for (size_t j = 0; j < ncells; j++) {
152 convert (cells[j].bb, flip, 0, pts);
153 i = store (seg, i, pts);
154 }
155}
156
157/* Generate a random permutation of the segments 1..n */
158static void generateRandomOrdering(size_t n, int *permute) {
159 for (size_t i = 0; i < n; i++) {
160 assert(i < INT_MAX);
161 permute[i] = (int)i + 1;
162 }
163
164 for (size_t i = 0; i < n; i++) {
165 const size_t j = (size_t)((double)i + drand48() * (double)(n - i));
166 if (j != i) {
167 SWAP(&permute[i], &permute[j]);
168 }
169 }
170}
171
172/* Function returns true if the trapezoid lies inside the polygon */
173static bool
175{
176 int rseg = t->rseg;
177
178 if (t->state == ST_INVALID)
179 return false;
180
181 if (t->lseg <= 0 || t->rseg <= 0)
182 return false;
183
184 if ((!is_valid_trap(t->u0) && !is_valid_trap(t->u1)) || (!is_valid_trap(t->d0) && !is_valid_trap(t->d1))) // triangle
185 return greater_than(seg[rseg].v1, seg[rseg].v0);
186
187 return false;
188}
189
190static double
191get_angle (pointf *vp0, pointf *vpnext, pointf *vp1)
192{
193 pointf v0, v1;
194
195 v0.x = vpnext->x - vp0->x;
196 v0.y = vpnext->y - vp0->y;
197
198 v1.x = vp1->x - vp0->x;
199 v1.y = vp1->y - vp0->y;
200
201 if (CROSS_SINE(v0, v1) >= 0) /* sine is positive */
202 return DOT(v0, v1)/LENGTH(v0)/LENGTH(v1);
203 else
204 return -1.0 * DOT(v0, v1)/LENGTH(v0)/LENGTH(v1) - 2;
205}
206
207/* (v0, v1) is the new diagonal to be added to the polygon. Find which */
208/* chain to use and return the positions of v0 and v1 in p and q */
209static void
210get_vertex_positions (int v0, int v1, int *ip, int *iq)
211{
212 vertexchain_t *vp0, *vp1;
213 int i;
214 double angle, temp;
215 int tp = 0, tq = 0;
216
217 vp0 = &vert[v0];
218 vp1 = &vert[v1];
219
220 /* p is identified as follows. Scan from (v0, v1) rightwards till */
221 /* you hit the first segment starting from v0. That chain is the */
222 /* chain of our interest */
223
224 angle = -4.0;
225 for (i = 0; i < 4; i++)
226 {
227 if (vp0->vnext[i] <= 0)
228 continue;
229 if ((temp = get_angle(&vp0->pt, &(vert[vp0->vnext[i]].pt),
230 &vp1->pt)) > angle)
231 {
232 angle = temp;
233 tp = i;
234 }
235 }
236
237 *ip = tp;
238
239 /* Do similar actions for q */
240
241 angle = -4.0;
242 for (i = 0; i < 4; i++)
243 {
244 if (vp1->vnext[i] <= 0)
245 continue;
246 if ((temp = get_angle(&vp1->pt, &(vert[vp1->vnext[i]].pt),
247 &vp0->pt)) > angle)
248 {
249 angle = temp;
250 tq = i;
251 }
252 }
253
254 *iq = tq;
255}
256
257/* v0 and v1 are specified in anti-clockwise order with respect to
258 * the current monotone polygon mcur. Split the current polygon into
259 * two polygons using the diagonal (v0, v1)
260 */
261static size_t make_new_monotone_poly(size_t mcur, int v0, int v1) {
262 int p, q, ip, iq;
263 const size_t mnew = newmon();
264 int i, j, nf0, nf1;
265 vertexchain_t *vp0, *vp1;
266
267 vp0 = &vert[v0];
268 vp1 = &vert[v1];
269
270 get_vertex_positions(v0, v1, &ip, &iq);
271
272 p = vp0->vpos[ip];
273 q = vp1->vpos[iq];
274
275 /* At this stage, we have got the positions of v0 and v1 in the */
276 /* desired chain. Now modify the linked lists */
277
278 i = new_chain_element(); /* for the new list */
279 j = new_chain_element();
280
281 mchain[i].vnum = v0;
282 mchain[j].vnum = v1;
283
284 mchain[i].next = mchain[p].next;
285 mchain[mchain[p].next].prev = i;
286 mchain[i].prev = j;
287 mchain[j].next = i;
288 mchain[j].prev = mchain[q].prev;
289 mchain[mchain[q].prev].next = j;
290
291 mchain[p].next = q;
292 mchain[q].prev = p;
293
294 nf0 = vp0->nextfree;
295 nf1 = vp1->nextfree;
296
297 vp0->vnext[ip] = v1;
298
299 vp0->vpos[nf0] = i;
300 vp0->vnext[nf0] = mchain[mchain[i].next].vnum;
301 vp1->vpos[nf1] = j;
302 vp1->vnext[nf1] = v0;
303
304 vp0->nextfree++;
305 vp1->nextfree++;
306
307#if DEBUG > 0
308 fprintf(stderr, "make_poly: mcur = %" PRISIZE_T ", (v0, v1) = (%d, %d)\n",
309 mcur, v0, v1);
310 fprintf(stderr, "next posns = (p, q) = (%d, %d)\n", p, q);
311#endif
312
313 mon[mcur] = p;
314 mon[mnew] = i;
315 return mnew;
316}
317
318/* recursively visit all the trapezoids */
319static void traverse_polygon(bitarray_t *visited, boxes_t *decomp,
320 segment_t *seg, traps_t *tr, size_t mcur,
321 size_t trnum, size_t from, int flip, int dir) {
322 trap_t *t;
323 size_t mnew;
324 int v0, v1;
325
326 if (!is_valid_trap(trnum) || bitarray_get(*visited, trnum))
327 return;
328
329 t = &tr->data[trnum];
330
331 bitarray_set(visited, trnum, true);
332
333 if (t->hi.y > t->lo.y + C_EPS && fp_equal(seg[t->lseg].v0.x, seg[t->lseg].v1.x) &&
334 fp_equal(seg[t->rseg].v0.x, seg[t->rseg].v1.x)) {
335 boxf newbox = {0};
336 if (flip) {
337 newbox.LL.x = t->lo.y;
338 newbox.LL.y = -seg[t->rseg].v0.x;
339 newbox.UR.x = t->hi.y;
340 newbox.UR.y = -seg[t->lseg].v0.x;
341 } else {
342 newbox.LL.x = seg[t->lseg].v0.x;
343 newbox.LL.y = t->lo.y;
344 newbox.UR.x = seg[t->rseg].v0.x;
345 newbox.UR.y = t->hi.y;
346 }
347 boxes_append(decomp, newbox);
348 }
349
350 /* We have much more information available here. */
351 /* rseg: goes upwards */
352 /* lseg: goes downwards */
353
354 /* Initially assume that dir = TR_FROM_DN (from the left) */
355 /* Switch v0 and v1 if necessary afterwards */
356
357
358 /* special cases for triangles with cusps at the opposite ends. */
359 /* take care of this first */
360 if (!is_valid_trap(t->u0) && !is_valid_trap(t->u1)) {
361 if (is_valid_trap(t->d0) && is_valid_trap(t->d1)) { // downward opening triangle
362 v0 = tr->data[t->d1].lseg;
363 v1 = t->lseg;
364 if (from == t->d1)
365 {
366 mnew = make_new_monotone_poly(mcur, v1, v0);
367 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
368 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
369 }
370 else
371 {
372 mnew = make_new_monotone_poly(mcur, v0, v1);
373 traverse_polygon (visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
374 traverse_polygon (visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
375 }
376 }
377 else
378 {
379 /* Just traverse all neighbours */
380 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
381 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
382 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
383 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
384 }
385 }
386
387 else if (!is_valid_trap(t->d0) && !is_valid_trap(t->d1)) {
388 if (is_valid_trap(t->u0) && is_valid_trap(t->u1)) { // upward opening triangle
389 v0 = t->rseg;
390 v1 = tr->data[t->u0].rseg;
391 if (from == t->u1)
392 {
393 mnew = make_new_monotone_poly(mcur, v1, v0);
394 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
395 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
396 }
397 else
398 {
399 mnew = make_new_monotone_poly(mcur, v0, v1);
400 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
401 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
402 }
403 }
404 else
405 {
406 /* Just traverse all neighbours */
407 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
408 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
409 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
410 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
411 }
412 }
413
414 else if (is_valid_trap(t->u0) && is_valid_trap(t->u1)) {
415 if (is_valid_trap(t->d0) && is_valid_trap(t->d1)) { // downward + upward cusps
416 v0 = tr->data[t->d1].lseg;
417 v1 = tr->data[t->u0].rseg;
418 if ((dir == TR_FROM_DN && t->d1 == from) ||
419 (dir == TR_FROM_UP && t->u1 == from))
420 {
421 mnew = make_new_monotone_poly(mcur, v1, v0);
422 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
423 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
424 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
425 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
426 }
427 else
428 {
429 mnew = make_new_monotone_poly(mcur, v0, v1);
430 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
431 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
432 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
433 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
434 }
435 }
436 else /* only downward cusp */
437 {
438 if (equal_to(t->lo, seg[t->lseg].v1)) {
439 v0 = tr->data[t->u0].rseg;
440 v1 = seg[t->lseg].next;
441
442 if (dir == TR_FROM_UP && t->u0 == from)
443 {
444 mnew = make_new_monotone_poly(mcur, v1, v0);
445 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
446 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
447 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
448 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
449 }
450 else
451 {
452 mnew = make_new_monotone_poly(mcur, v0, v1);
453 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
454 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
455 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
456 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
457 }
458 }
459 else
460 {
461 v0 = t->rseg;
462 v1 = tr->data[t->u0].rseg;
463 if (dir == TR_FROM_UP && t->u1 == from)
464 {
465 mnew = make_new_monotone_poly(mcur, v1, v0);
466 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
467 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
468 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
469 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
470 }
471 else
472 {
473 mnew = make_new_monotone_poly(mcur, v0, v1);
474 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
475 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
476 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
477 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
478 }
479 }
480 }
481 }
482 else if (is_valid_trap(t->u0) || is_valid_trap(t->u1)) { // no downward cusp
483 if (is_valid_trap(t->d0) && is_valid_trap(t->d1)) { // only upward cusp
484 if (equal_to(t->hi, seg[t->lseg].v0)) {
485 v0 = tr->data[t->d1].lseg;
486 v1 = t->lseg;
487 if (!(dir == TR_FROM_DN && t->d0 == from))
488 {
489 mnew = make_new_monotone_poly(mcur, v1, v0);
490 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
491 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
492 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
493 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
494 }
495 else
496 {
497 mnew = make_new_monotone_poly(mcur, v0, v1);
498 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
499 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
500 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
501 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
502 }
503 }
504 else
505 {
506 v0 = tr->data[t->d1].lseg;
507 v1 = seg[t->rseg].next;
508
509 if (dir == TR_FROM_DN && t->d1 == from)
510 {
511 mnew = make_new_monotone_poly(mcur, v1, v0);
512 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
513 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
514 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
515 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
516 }
517 else
518 {
519 mnew = make_new_monotone_poly(mcur, v0, v1);
520 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
521 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
522 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
523 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
524 }
525 }
526 }
527 else /* no cusp */
528 {
529 if (equal_to(t->hi, seg[t->lseg].v0) && equal_to(t->lo, seg[t->rseg].v0)) {
530 v0 = t->rseg;
531 v1 = t->lseg;
532 if (dir == TR_FROM_UP)
533 {
534 mnew = make_new_monotone_poly(mcur, v1, v0);
535 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
536 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
537 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
538 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
539 }
540 else
541 {
542 mnew = make_new_monotone_poly(mcur, v0, v1);
543 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
544 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
545 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
546 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
547 }
548 }
549 else if (equal_to(t->hi, seg[t->rseg].v1) &&
550 equal_to(t->lo, seg[t->lseg].v1)) {
551 v0 = seg[t->rseg].next;
552 v1 = seg[t->lseg].next;
553
554 if (dir == TR_FROM_UP)
555 {
556 mnew = make_new_monotone_poly(mcur, v1, v0);
557 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
558 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
559 traverse_polygon(visited, decomp, seg, tr, mnew, t->d1, trnum, flip, TR_FROM_UP);
560 traverse_polygon(visited, decomp, seg, tr, mnew, t->d0, trnum, flip, TR_FROM_UP);
561 }
562 else
563 {
564 mnew = make_new_monotone_poly(mcur, v0, v1);
565 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
566 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
567 traverse_polygon(visited, decomp, seg, tr, mnew, t->u0, trnum, flip, TR_FROM_DN);
568 traverse_polygon(visited, decomp, seg, tr, mnew, t->u1, trnum, flip, TR_FROM_DN);
569 }
570 }
571 else /* no split possible */
572 {
573 traverse_polygon(visited, decomp, seg, tr, mcur, t->u0, trnum, flip, TR_FROM_DN);
574 traverse_polygon(visited, decomp, seg, tr, mcur, t->d0, trnum, flip, TR_FROM_UP);
575 traverse_polygon(visited, decomp, seg, tr, mcur, t->u1, trnum, flip, TR_FROM_DN);
576 traverse_polygon(visited, decomp, seg, tr, mcur, t->d1, trnum, flip, TR_FROM_UP);
577 }
578 }
579 }
580}
581
582static void
584 int flip, boxes_t *decomp) {
585 int i;
586 bitarray_t visited = bitarray_new(tr->length);
587
588 mchain = gv_calloc(tr->length, sizeof(monchain_t));
589 vert = gv_calloc(nsegs + 1, sizeof(vertexchain_t));
590 mon = gv_calloc(nsegs, sizeof(int));
591
592 /* First locate a trapezoid which lies inside the polygon */
593 /* and which is triangular */
594 size_t j;
595 for (j = 0; j < tr->length; j++)
596 if (inside_polygon(&tr->data[j], seg)) break;
597 const size_t tr_start = j;
598
599 /* Initialise the mon data-structure and start spanning all the */
600 /* trapezoids within the polygon */
601
602 for (i = 1; i <= nsegs; i++) {
603 mchain[i].prev = seg[i].prev;
604 mchain[i].next = seg[i].next;
605 mchain[i].vnum = i;
606 vert[i].pt = seg[i].v0;
607 vert[i].vnext[0] = seg[i].next; /* next vertex */
608 vert[i].vpos[0] = i; /* locn. of next vertex */
609 vert[i].nextfree = 1;
610 }
611
612 chain_idx = nsegs;
613 mon_idx = 0;
614 mon[0] = 1; /* position of any vertex in the first */
615 /* chain */
616
617 /* traverse the polygon */
618 if (is_valid_trap(tr->data[tr_start].u0))
619 traverse_polygon(&visited, decomp, seg, tr, 0, tr_start,
620 tr->data[tr_start].u0, flip, TR_FROM_UP);
621 else if (is_valid_trap(tr->data[tr_start].d0))
622 traverse_polygon(&visited, decomp, seg, tr, 0, tr_start,
623 tr->data[tr_start].d0, flip, TR_FROM_DN);
624
625 bitarray_reset(&visited);
626 free (mchain);
627 free (vert);
628 free (mon);
629}
630
631static bool rectIntersect(boxf *d, const boxf r0, const boxf r1) {
632 double t = fmax(r0.LL.x, r1.LL.x);
633 d->UR.x = fmin(r0.UR.x, r1.UR.x);
634 d->LL.x = t;
635
636 t = fmax(r0.LL.y, r1.LL.y);
637 d->UR.y = fmin(r0.UR.y, r1.UR.y);
638 d->LL.y = t;
639
640 return !(d->LL.x >= d->UR.x || d->LL.y >= d->UR.y);
641}
642
643#if DEBUG > 1
644static void
645dumpTrap (trap_t* tr, int n)
646{
647 int i;
648 for (i = 1; i <= n; i++) {
649 tr++;
650 fprintf(stderr, "%d : %d %d (%f,%f) (%f,%f) %" PRISIZE_T " %" PRISIZE_T
651 " %" PRISIZE_T " %" PRISIZE_T "\n", i, tr->lseg, tr->rseg,
652 tr->hi.x, tr->hi.y, tr->lo.x, tr->lo.y, tr->u0, tr->u1, tr->d0,
653 tr->d1);
654 fprintf(stderr, " %" PRISIZE_T " %" PRISIZE_T " %d %d\n", tr->sink,
655 tr->usave, tr->uside, tr->state);
656 }
657 fprintf (stderr, "====\n");
658}
659
660static void
661dumpSegs (segment_t* sg, int n)
662{
663 int i;
664 for (i = 1; i <= n; i++) {
665 sg++;
666 fprintf(stderr, "%d : (%f,%f) (%f,%f) %d %" PRISIZE_T " %" PRISIZE_T
667 " %d %d\n", i, sg->v0.x, sg->v0.y, sg->v1.x, sg->v1.y,
668 (int)sg->is_inserted, sg->root0, sg->root1, sg->next, sg->prev);
669 }
670 fprintf (stderr, "====\n");
671}
672#endif
673
674boxf *partition(cell *cells, size_t ncells, size_t *nrects, boxf bb) {
675 const size_t nsegs = 4 * (ncells + 1);
676 segment_t* segs = gv_calloc(nsegs + 1, sizeof(segment_t));
677 int* permute = gv_calloc(nsegs, sizeof(int));
678
679 if (DEBUG) {
680 fprintf(stderr, "cells = %" PRISIZE_T " segs = %" PRISIZE_T
681 " traps = dynamic\n", ncells, nsegs);
682 }
683 genSegments(cells, ncells, bb, segs, 0);
684 if (DEBUG) {
685 fprintf(stderr, "%" PRISIZE_T "\n\n", ncells + 1);
686 for (size_t i = 1; i <= nsegs; i++) {
687 if (i%4 == 1) fprintf(stderr, "4\n");
688 fprintf (stderr, "%f %f\n", segs[i].v0.x, segs[i].v0.y);
689 if (i%4 == 0) fprintf(stderr, "\n");
690 }
691 }
692 srand48(173);
693 generateRandomOrdering(nsegs, permute);
694 assert(nsegs <= INT_MAX);
695 traps_t hor_traps = construct_trapezoids((int)nsegs, segs, permute);
696 if (DEBUG) {
697 fprintf (stderr, "hor traps = %" PRISIZE_T "\n", hor_traps.length);
698 }
699 boxes_t hor_decomp = {0};
700 monotonate_trapezoids((int)nsegs, segs, &hor_traps, 0, &hor_decomp);
701 free(hor_traps.data);
702
703 genSegments(cells, ncells, bb, segs, 1);
704 generateRandomOrdering(nsegs, permute);
705 traps_t ver_traps = construct_trapezoids((int)nsegs, segs, permute);
706 if (DEBUG) {
707 fprintf (stderr, "ver traps = %" PRISIZE_T "\n", ver_traps.length);
708 }
709 boxes_t vert_decomp = {0};
710 monotonate_trapezoids((int)nsegs, segs, &ver_traps, 1, &vert_decomp);
711 free(ver_traps.data);
712
713 boxes_t rs = {0};
714 for (size_t i = 0; i < boxes_size(&vert_decomp); ++i)
715 for (size_t j = 0; j < boxes_size(&hor_decomp); ++j) {
716 boxf newbox = {0};
717 if (rectIntersect(&newbox, boxes_get(&vert_decomp, i),
718 boxes_get(&hor_decomp, j)))
719 boxes_append(&rs, newbox);
720 }
721
722 free (segs);
723 free (permute);
724 boxes_free(&hor_decomp);
725 boxes_free(&vert_decomp);
726 *nrects = boxes_size(&rs);
727 return boxes_detach(&rs);
728}
static agxbuf last
last message
Definition agerror.c:29
Memory allocation wrappers that exit on failure.
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
API for compacted arrays of booleans.
static bitarray_t bitarray_new(size_t size_bits)
create an array of the given element length
Definition bitarray.h:46
static bool bitarray_get(bitarray_t self, size_t index)
get the value of the given element
Definition bitarray.h:64
static void bitarray_set(bitarray_t *self, size_t index, bool value)
set or clear the value of the given element
Definition bitarray.h:79
static void bitarray_reset(bitarray_t *self)
free underlying resources and leave a bit array empty
Definition bitarray.h:98
double drand48(void)
Definition utils.c:1561
void free(void *)
Arithmetic helper functions.
#define SWAP(a, b)
Definition gv_math.h:130
static void get_vertex_positions(int v0, int v1, int *ip, int *iq)
Definition partition.c:210
boxf * partition(cell *cells, size_t ncells, size_t *nrects, boxf bb)
partitions space around cells (nodes) into rectangular tiles
Definition partition.c:674
static size_t mon_idx
Definition partition.c:71
#define NPOINTS
Definition partition.c:31
static void genSegments(cell *cells, size_t ncells, boxf bb, segment_t *seg, int flip)
Definition partition.c:144
#define newmon()
Definition partition.c:88
#define TR_FROM_DN
Definition partition.c:34
#define DOT(v0, v1)
Definition partition.c:45
static void convert(boxf bb, int flip, int ccw, pointf *pts)
Definition partition.c:93
static double get_angle(pointf *vp0, pointf *vpnext, pointf *vp1)
Definition partition.c:191
#define srand48
Definition partition.c:50
static int chain_idx
Definition partition.c:70
static void generateRandomOrdering(size_t n, int *permute)
Definition partition.c:158
static size_t make_new_monotone_poly(size_t mcur, int v0, int v1)
Definition partition.c:261
#define LENGTH(v0)
Definition partition.c:47
static int * mon
Definition partition.c:85
static monchain_t * mchain
Definition partition.c:75
static bool rectIntersect(boxf *d, const boxf r0, const boxf r1)
Definition partition.c:631
static void monotonate_trapezoids(int nsegs, segment_t *seg, traps_t *tr, int flip, boxes_t *decomp)
Definition partition.c:583
#define new_chain_element()
Definition partition.c:90
#define TR_FROM_UP
Definition partition.c:33
static bool inside_polygon(trap_t *t, segment_t *seg)
Definition partition.c:174
#define DEBUG
Definition partition.c:28
#define CROSS_SINE(v0, v1)
Definition partition.c:46
static int store(segment_t *seg, int first, pointf *pts)
Definition partition.c:120
static vertexchain_t * vert
Definition partition.c:82
static void traverse_polygon(bitarray_t *visited, boxes_t *decomp, segment_t *seg, traps_t *tr, size_t mcur, size_t trnum, size_t from, int flip, int dir)
Definition partition.c:319
function partition, subroutine of mkMaze
#define PRISIZE_T
Definition prisize_t.h:25
Definition geom.h:41
pointf UR
Definition geom.h:41
pointf LL
Definition geom.h:41
result of partitioning available space, part of maze
Definition grid.h:33
double x
Definition geom.h:29
double y
Definition geom.h:29
size_t root0
Definition trap.h:31
pointf v0
Definition trap.h:29
size_t root1
root nodes in Q
Definition trap.h:31
int prev
Definition trap.h:33
int next
Definition trap.h:32
pointf v1
Definition trap.h:29
bool is_inserted
Definition trap.h:30
Definition trap.h:39
size_t d1
Definition trap.h:43
int rseg
Definition trap.h:40
size_t sink
pointer to corresponding in Q
Definition trap.h:44
pointf lo
Definition trap.h:41
size_t d0
Definition trap.h:43
int state
Definition trap.h:47
size_t usave
I forgot what this means.
Definition trap.h:45
size_t u1
Definition trap.h:42
pointf hi
Definition trap.h:41
size_t u0
Definition trap.h:42
int uside
I forgot what this means.
Definition trap.h:46
int lseg
Definition trap.h:40
an array of trapezoids
Definition trap.h:60
size_t length
Definition trap.h:61
trap_t * data
Definition trap.h:62
int vpos[4]
Definition partition.c:66
int vnext[4]
Definition partition.c:65
trapezoid elements and utilities for partition.c
#define ST_INVALID
Definition trap.h:66
static bool is_valid_trap(size_t index)
Definition trap.h:55
traps_t construct_trapezoids(int, segment_t *, int *)
Definition trapezoid.c:874
static bool equal_to(pointf v0, pointf v1)
Definition trap.h:93
static bool greater_than(pointf v0, pointf v1)
Definition trap.h:97
#define C_EPS
Definition trap.h:68
static bool fp_equal(double s, double t)
Definition trap.h:74
int ccw(Ppoint_t p1, Ppoint_t p2, Ppoint_t p3)
are the given points counter-clockwise, clockwise, or co-linear?
Definition triang.c:23