Graphviz 13.1.1~dev.20250718.1235
Loading...
Searching...
No Matches
mincross.c
Go to the documentation of this file.
1/*************************************************************************
2 * Copyright (c) 2011 AT&T Intellectual Property
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * https://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors: Details at https://graphviz.org
9 *************************************************************************/
10
11
12/*
13 * dot_mincross(g) takes a ranked graphs, and finds an ordering
14 * that avoids edge crossings. clusters are expanded.
15 * N.B. the rank structure is global (not allocated per cluster)
16 * because mincross may compare nodes in different clusters.
17 */
18
19#include <assert.h>
20#include <cgraph/cgraph.h>
21#include <dotgen/dot.h>
22#include <inttypes.h>
23#include <limits.h>
24#include <stdbool.h>
25#include <stdint.h>
26#include <stdlib.h>
27#include <string.h>
28#include <util/alloc.h>
29#include <util/exit.h>
30#include <util/gv_math.h>
31#include <util/itos.h>
32#include <util/list.h>
33#include <util/streq.h>
34
36 size_t nrows;
37 size_t ncols;
38 uint8_t *data;
39 size_t allocated;
40};
41
48static bool matrix_get(adjmatrix_t *me, size_t row, size_t col) {
49 assert(me != NULL);
50
51 // if this index is beyond anything set, infer it as unset
52 const size_t index = row * me->ncols + col;
53 const size_t byte_index = index / 8;
54 const size_t bit_index = index % 8;
55 if (byte_index >= me->allocated) {
56 return false;
57 }
58
59 return (me->data[byte_index] >> bit_index) & 1;
60}
61
67static void matrix_set(adjmatrix_t *me, size_t row, size_t col) {
68 assert(me != NULL);
69
70 // if we are updating beyond allocated space, expand the backing store
71 const size_t index = row * me->ncols + col;
72 const size_t byte_index = index / 8;
73 const size_t bit_index = index % 8;
74 if (byte_index >= me->allocated) {
75 me->data = gv_recalloc(me->data, me->allocated, byte_index + 1,
76 sizeof(me->data[0]));
77 me->allocated = byte_index + 1;
78 }
79
80 me->data[byte_index] |= (uint8_t)(UINT8_C(1) << bit_index);
81}
82
83/* #define DEBUG */
84#define MARK(v) (ND_mark(v))
85#define saveorder(v) (ND_coord(v)).x
86#define flatindex(v) ((size_t)ND_low(v))
87
88 /* forward declarations */
89static bool medians(graph_t * g, int r0, int r1);
90static int nodeposcmpf(const void *, const void *);
91static int edgeidcmpf(const void *, const void *);
92static void flat_breakcycles(graph_t * g);
93static void flat_reorder(graph_t * g);
94static void flat_search(graph_t * g, node_t * v);
95static void init_mincross(graph_t * g);
96static void merge2(graph_t * g);
97static void init_mccomp(graph_t *g, size_t c);
98static void cleanup2(graph_t *g, int64_t nc);
100static int64_t mincross_clust(graph_t *g);
102static int64_t mincross(graph_t *g, int startpass);
103static void mincross_step(graph_t * g, int pass);
104static void mincross_options(graph_t * g);
105static void save_best(graph_t * g);
106static void restore_best(graph_t * g);
107static adjmatrix_t *new_matrix(size_t i, size_t j);
108static void free_matrix(adjmatrix_t * p);
109static int ordercmpf(const void *, const void *);
110static int64_t ncross(void);
111#ifdef DEBUG
112void check_rs(graph_t * g, int null_ok);
113void check_order(void);
114void check_vlists(graph_t * g);
115void node_in_root_vlist(node_t * n);
116#endif
117
118
119 /* mincross parameters */
120static int MinQuit;
121static const double Convergence = .995;
122
123static graph_t *Root;
126static int *TI_list;
127static bool ReMincross;
128
129#if defined(DEBUG) && DEBUG > 1
130static void indent(graph_t* g)
131{
132 if (g->parent) {
133 fprintf (stderr, " ");
134 indent(g->parent);
135 }
136}
137
139static void nname(node_t *v, FILE *stream) {
140 if (ND_node_type(v)) {
141 if (ND_ranktype(v) == CLUSTER)
142 fprintf(stream, "v%s_%p", agnameof(ND_clust(v)), v);
143 else
144 fprintf(stream, "v_%p", v);
145 } else
146 fputs(agnameof(v), stream);
147}
148static void dumpg (graph_t* g)
149{
150 int j, i, r;
151 node_t* v;
152 edge_t* e;
153
154 fprintf (stderr, "digraph A {\n");
155 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
156 fprintf (stderr, " subgraph {rank=same ");
157 for (i = 0; i < GD_rank(g)[r].n; i++) {
158 v = GD_rank(g)[r].v[i];
159 if (i > 0)
160 fputs(" -> ", stderr);
161 nname(v, stderr);
162 }
163 if (i > 1) fprintf (stderr, " [style=invis]}\n");
164 else fprintf (stderr, " }\n");
165 }
166 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
167 for (i = 0; i < GD_rank(g)[r].n; i++) {
168 v = GD_rank(g)[r].v[i];
169 for (j = 0; (e = ND_out(v).list[j]); j++) {
170 nname(v, stderr);
171 fputs(" -> ", stderr);
172 nname(aghead(e), stderr);
173 fputc('\n', stderr);
174 }
175 }
176 }
177 fprintf (stderr, "}\n");
178}
179static void dumpr (graph_t* g, int edges)
180{
181 int j, i, r;
182 node_t* v;
183 edge_t* e;
184
185 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
186 fprintf (stderr, "[%d] ", r);
187 for (i = 0; i < GD_rank(g)[r].n; i++) {
188 v = GD_rank(g)[r].v[i];
189 nname(v, stderr);
190 fprintf(stderr, "(%.02f,%d) ", saveorder(v),ND_order(v));
191 }
192 fprintf (stderr, "\n");
193 }
194 if (edges == 0) return;
195 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
196 for (i = 0; i < GD_rank(g)[r].n; i++) {
197 v = GD_rank(g)[r].v[i];
198 for (j = 0; (e = ND_out(v).list[j]); j++) {
199 nname(v, stderr);
200 fputs(" -> ", stderr);
201 nname(aghead(e), stderr);
202 fputc('\n', stderr);
203 }
204 }
205 }
206}
207#endif
208
209typedef struct {
211 int x, lo, hi;
213} info_t;
214
215#define ND_x(n) (((info_t*)AGDATA(n))->x)
216#define ND_lo(n) (((info_t*)AGDATA(n))->lo)
217#define ND_hi(n) (((info_t*)AGDATA(n))->hi)
218#define ND_np(n) (((info_t*)AGDATA(n))->np)
219#define ND_idx(n) (ND_order(ND_np(n)))
220
221static void
223{
224 Agnode_t* n;
225 Agnode_t* nxt;
226
227 for (n = agfstnode(sg); n; n = nxt) {
228 nxt = agnxtnode (sg, n);
229 agdelnode(sg,n);
230 }
231}
232
233#define isBackedge(e) (ND_idx(aghead(e)) > ND_idx(agtail(e)))
234
235static Agnode_t*
237{
238 Agnode_t* n;
239
240 for (n = agfstnode(sg); n; n = agnxtnode(sg, n))
241 if (agdegree(g,n,1,0) == 0) return n;
242 return NULL;
243}
244
245static int
247{
248 Agnode_t* n;
249 Agedge_t* e;
250 Agedge_t* nxte;
251 int cnt = 0;
252
253 while ((n = findSource(g, sg))) {
254 arr[cnt++] = ND_np(n);
255 agdelnode(sg, n);
256 for (e = agfstout(g, n); e; e = nxte) {
257 nxte = agnxtout(g, e);
258 agdeledge(g, e);
259 }
260 }
261 return cnt;
262}
263
264static int
265getComp (graph_t* g, node_t* n, graph_t* comp, int* indices)
266{
267 int backedge = 0;
268 Agedge_t* e;
269
270 ND_x(n) = 1;
271 indices[agnnodes(comp)] = ND_idx(n);
272 agsubnode(comp, n, 1);
273 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
274 if (isBackedge(e)) backedge++;
275 if (!ND_x(aghead(e)))
276 backedge += getComp(g, aghead(e), comp, indices);
277 }
278 for (e = agfstin(g,n); e; e = agnxtin(g,e)) {
279 if (isBackedge(e)) backedge++;
280 if (!ND_x(agtail(e)))
281 backedge += getComp(g, agtail(e), comp, indices);
282 }
283 return backedge;
284}
285
287static void
289{
290 int cnt;
291 bool haveBackedge = false;
292 Agraph_t* sg;
293 Agnode_t* n;
294 Agnode_t* nxtp;
295 Agnode_t* v;
296
297 for (n = agfstnode(g); n; n = nxtp) {
298 v = nxtp = agnxtnode(g, n);
299 for (; v; v = agnxtnode(g, v)) {
300 if (ND_hi(v) <= ND_lo(n)) {
301 haveBackedge = true;
302 agedge(g, v, n, NULL, 1);
303 }
304 else if (ND_hi(n) <= ND_lo(v)) {
305 agedge(g, n, v, NULL, 1);
306 }
307 }
308 }
309 if (!haveBackedge) return;
310
311 sg = agsubg(g, "comp", 1);
312 Agnode_t **arr = gv_calloc(agnnodes(g), sizeof(Agnode_t*));
313 int *indices = gv_calloc(agnnodes(g), sizeof(int));
314
315 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
316 if (ND_x(n) || agdegree(g,n,1,1) == 0) continue;
317 if (getComp(g, n, sg, indices)) {
318 int i, sz = agnnodes(sg);
319 cnt = topsort (g, sg, arr);
320 assert (cnt == sz);
321 qsort(indices, cnt, sizeof(int), ordercmpf);
322 for (i = 0; i < sz; i++) {
323 ND_order(arr[i]) = indices[i];
324 rk->v[indices[i]] = arr[i];
325 }
326 }
327 emptyComp(sg);
328 }
329 free(indices);
330 free (arr);
331}
332
333/* Check that the ordering of labels for flat edges is consistent.
334 * This is necessary because dot_position will attempt to force the label
335 * to be between the edge's vertices. This can lead to an infeasible problem.
336 *
337 * We check each rank for any flat edge labels (as dummy nodes) and create a
338 * graph with a node for each label. If the graph contains more than 1 node, we
339 * call fixLabelOrder to see if there really is a problem and, if so, fix it.
340 */
341void
343{
344 int j, r, lo, hi;
345 graph_t* lg = NULL;
346 rank_t* rk;
347 Agnode_t* u;
348 Agnode_t* n;
349 Agedge_t* e;
350
351 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
352 rk = GD_rank(g)+r;
353 for (j = 0; j < rk->n; j++) {
354 u = rk->v[j];
355 if ((e = ND_alg(u))) {
356 if (!lg) lg = agopen ("lg", Agstrictdirected, 0);
357 n = agnode(lg, ITOS(j), 1);
358 agbindrec(n, "info", sizeof(info_t), true);
359 lo = ND_order(aghead(ND_out(u).list[0]));
360 hi = ND_order(aghead(ND_out(u).list[1]));
361 if (lo > hi) {
362 SWAP(&lo, &hi);
363 }
364 ND_lo(n) = lo;
365 ND_hi(n) = hi;
366 ND_np(n) = u;
367 }
368 }
369 if (lg) {
370 if (agnnodes(lg) > 1) fixLabelOrder (lg, rk);
371 agclose(lg);
372 lg = NULL;
373 }
374 }
375}
376
377/* Minimize edge crossings
378 * Note that nodes are not placed into GD_rank(g) until mincross()
379 * is called.
380 */
382 int64_t nc;
383 char *s;
384
385 /* check whether malformed input has led to empty cluster that the crossing
386 * functions will not anticipate
387 */
388 {
389 size_t i;
390 for (i = 1; i <= (size_t)GD_n_cluster(g); ) {
391 if (agfstnode(GD_clust(g)[i]) == NULL) {
392 agwarningf("removing empty cluster\n");
393 memmove(&GD_clust(g)[i], &GD_clust(g)[i + 1],
394 ((size_t)GD_n_cluster(g) - i) * sizeof(GD_clust(g)[0]));
395 --GD_n_cluster(g);
396 } else {
397 ++i;
398 }
399 }
400 }
401
402 init_mincross(g);
403
404 size_t comp;
405 for (nc = 0, comp = 0; comp < GD_comp(g).size; comp++) {
406 init_mccomp(g, comp);
407 const int64_t mc = mincross(g, 0);
408 if (mc < 0) {
409 return -1;
410 }
411 nc += mc;
412 }
413
414 merge2(g);
415
416 /* run mincross on contents of each cluster */
417 for (int c = 1; c <= GD_n_cluster(g); c++) {
418 const int64_t mc = mincross_clust(GD_clust(g)[c]);
419 if (mc < 0) {
420 return -1;
421 }
422 nc += mc;
423#ifdef DEBUG
424 check_vlists(GD_clust(g)[c]);
425 check_order();
426#endif
427 }
428
429 if (GD_n_cluster(g) > 0 && (!(s = agget(g, "remincross")) || mapbool(s))) {
431 ReMincross = true;
432 const int64_t mc = mincross(g, 2);
433 if (mc < 0) {
434 return -1;
435 }
436 nc = mc;
437#ifdef DEBUG
438 for (int c = 1; c <= GD_n_cluster(g); c++)
439 check_vlists(GD_clust(g)[c]);
440#endif
441 }
442 cleanup2(g, nc);
443 return 0;
444}
445
446static adjmatrix_t *new_matrix(size_t i, size_t j) {
447 adjmatrix_t *rv = gv_alloc(sizeof(adjmatrix_t));
448 rv->nrows = i;
449 rv->ncols = j;
450 return rv;
451}
452
453static void free_matrix(adjmatrix_t * p)
454{
455 if (p) {
456 free(p->data);
457 free(p);
458 }
459}
460
461static void init_mccomp(graph_t *g, size_t c) {
462 int r;
463
464 GD_nlist(g) = GD_comp(g).list[c];
465 if (c > 0) {
466 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
467 GD_rank(g)[r].v = GD_rank(g)[r].v + GD_rank(g)[r].n;
468 GD_rank(g)[r].n = 0;
469 }
470 }
471}
472
473static int betweenclust(edge_t * e)
474{
475 while (ED_to_orig(e))
476 e = ED_to_orig(e);
477 return (ND_clust(agtail(e)) != ND_clust(aghead(e)));
478}
479
480static void do_ordering_node(graph_t *g, node_t *n, bool outflag) {
481 int i, ne;
482 node_t *u, *v;
483 edge_t *e, *f, *fe;
484 edge_t **sortlist = TE_list;
485
486 if (ND_clust(n))
487 return;
488 if (outflag) {
489 for (i = ne = 0; (e = ND_out(n).list[i]); i++)
490 if (!betweenclust(e))
491 sortlist[ne++] = e;
492 } else {
493 for (i = ne = 0; (e = ND_in(n).list[i]); i++)
494 if (!betweenclust(e))
495 sortlist[ne++] = e;
496 }
497 if (ne <= 1)
498 return;
499 /* write null terminator at end of list.
500 requires +1 in TE_list alloccation */
501 sortlist[ne] = 0;
502 qsort(sortlist, ne, sizeof(sortlist[0]), edgeidcmpf);
503 for (ne = 1; (f = sortlist[ne]); ne++) {
504 e = sortlist[ne - 1];
505 if (outflag) {
506 u = aghead(e);
507 v = aghead(f);
508 } else {
509 u = agtail(e);
510 v = agtail(f);
511 }
512 if (find_flat_edge(u, v))
513 return;
514 fe = new_virtual_edge(u, v, NULL);
516 flat_edge(g, fe);
517 }
518}
519
520static void do_ordering(graph_t *g, bool outflag) {
521 /* Order all nodes in graph */
522 node_t *n;
523
524 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
525 do_ordering_node (g, n, outflag);
526 }
527}
528
530{
531 /* Order nodes which have the "ordered" attribute */
532 node_t *n;
533 const char *ordering;
534
535 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
536 if ((ordering = late_string(n, N_ordering, NULL))) {
537 if (streq(ordering, "out"))
538 do_ordering_node(g, n, true);
539 else if (streq(ordering, "in"))
540 do_ordering_node(g, n, false);
541 else if (ordering[0])
542 agerrorf("ordering '%s' not recognized for node '%s'.\n", ordering, agnameof(n));
543 }
544 }
545}
546
547/* handle case where graph specifies edge ordering
548 * If the graph does not have an ordering attribute, we then
549 * check for nodes having the attribute.
550 * Note that, in this implementation, the value of G_ordering
551 * dominates the value of N_ordering.
552 */
553static void ordered_edges(graph_t * g)
554{
555 char *ordering;
556
557 if (!G_ordering && !N_ordering)
558 return;
559 if ((ordering = late_string(g, G_ordering, NULL))) {
560 if (streq(ordering, "out"))
561 do_ordering(g, true);
562 else if (streq(ordering, "in"))
563 do_ordering(g, false);
564 else if (ordering[0])
565 agerrorf("ordering '%s' not recognized.\n", ordering);
566 }
567 else
568 {
569 graph_t *subg;
570
571 for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) {
572 /* clusters are processed by separate calls to ordered_edges */
573 if (!is_cluster(subg))
574 ordered_edges(subg);
575 }
577 }
578}
579
580static int64_t mincross_clust(graph_t *g) {
581 int c;
582
583 if (expand_cluster(g) != 0) {
584 return -1;
585 }
586 ordered_edges(g);
588 flat_reorder(g);
589 int64_t nc = mincross(g, 2);
590 if (nc < 0) {
591 return nc;
592 }
593
594 for (c = 1; c <= GD_n_cluster(g); c++) {
595 const int64_t mc = mincross_clust(GD_clust(g)[c]);
596 if (mc < 0) {
597 return mc;
598 }
599 nc += mc;
600 }
601
602 save_vlist(g);
603 return nc;
604}
605
606static bool left2right(graph_t *g, node_t *v, node_t *w) {
607 /* CLUSTER indicates orig nodes of clusters, and vnodes of skeletons */
608 if (!ReMincross) {
609 if (ND_clust(v) != ND_clust(w) && ND_clust(v) && ND_clust(w)) {
610 /* the following allows cluster skeletons to be swapped */
611 if (ND_ranktype(v) == CLUSTER && ND_node_type(v) == VIRTUAL)
612 return false;
613 if (ND_ranktype(w) == CLUSTER && ND_node_type(w) == VIRTUAL)
614 return false;
615 return true;
616 }
617 } else {
618 if (ND_clust(v) != ND_clust(w))
619 return true;
620 }
621 adjmatrix_t *const M = GD_rank(g)[ND_rank(v)].flat;
622 if (M == NULL)
623 return false;
624 if (GD_flip(g)) {
625 SWAP(&v, &w);
626 }
627 return matrix_get(M, (size_t)flatindex(v), (size_t)flatindex(w));
628}
629
630static int64_t in_cross(node_t *v, node_t *w) {
631 edge_t **e1, **e2;
632 int inv, t;
633 int64_t cross = 0;
634
635 for (e2 = ND_in(w).list; *e2; e2++) {
636 int cnt = ED_xpenalty(*e2);
637
638 inv = ND_order(agtail(*e2));
639
640 for (e1 = ND_in(v).list; *e1; e1++) {
641 t = ND_order(agtail(*e1)) - inv;
642 if (t > 0 || (t == 0 && ED_tail_port(*e1).p.x > ED_tail_port(*e2).p.x))
643 cross += ED_xpenalty(*e1) * cnt;
644 }
645 }
646 return cross;
647}
648
649static int out_cross(node_t * v, node_t * w)
650{
651 edge_t **e1, **e2;
652 int inv, cross = 0, t;
653
654 for (e2 = ND_out(w).list; *e2; e2++) {
655 int cnt = ED_xpenalty(*e2);
656 inv = ND_order(aghead(*e2));
657
658 for (e1 = ND_out(v).list; *e1; e1++) {
659 t = ND_order(aghead(*e1)) - inv;
660 if (t > 0 || (t == 0 && (ED_head_port(*e1)).p.x > (ED_head_port(*e2)).p.x))
661 cross += ED_xpenalty(*e1) * cnt;
662 }
663 }
664 return cross;
665
666}
667
668static void exchange(node_t * v, node_t * w)
669{
670 int vi, wi, r;
671
672 r = ND_rank(v);
673 vi = ND_order(v);
674 wi = ND_order(w);
675 ND_order(v) = wi;
676 GD_rank(Root)[r].v[wi] = v;
677 ND_order(w) = vi;
678 GD_rank(Root)[r].v[vi] = w;
679}
680
681static int64_t transpose_step(graph_t *g, int r, bool reverse) {
682 int i;
683 node_t *v, *w;
684
685 int64_t rv = 0;
686 GD_rank(g)[r].candidate = false;
687 for (i = 0; i < GD_rank(g)[r].n - 1; i++) {
688 v = GD_rank(g)[r].v[i];
689 w = GD_rank(g)[r].v[i + 1];
690 assert(ND_order(v) < ND_order(w));
691 if (left2right(g, v, w))
692 continue;
693 int64_t c0 = 0;
694 int64_t c1 = 0;
695 if (r > 0) {
696 c0 += in_cross(v, w);
697 c1 += in_cross(w, v);
698 }
699 if (GD_rank(g)[r + 1].n > 0) {
700 c0 += out_cross(v, w);
701 c1 += out_cross(w, v);
702 }
703 if (c1 < c0 || (c0 > 0 && reverse && c1 == c0)) {
704 exchange(v, w);
705 rv += c0 - c1;
706 GD_rank(Root)[r].valid = false;
707 GD_rank(g)[r].candidate = true;
708
709 if (r > GD_minrank(g)) {
710 GD_rank(Root)[r - 1].valid = false;
711 GD_rank(g)[r - 1].candidate = true;
712 }
713 if (r < GD_maxrank(g)) {
714 GD_rank(Root)[r + 1].valid = false;
715 GD_rank(g)[r + 1].candidate = true;
716 }
717 }
718 }
719 return rv;
720}
721
722static void transpose(graph_t * g, bool reverse)
723{
724 int r;
725
726 for (r = GD_minrank(g); r <= GD_maxrank(g); r++)
727 GD_rank(g)[r].candidate = true;
728 int64_t delta;
729 do {
730 delta = 0;
731 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
732 if (GD_rank(g)[r].candidate) {
733 delta += transpose_step(g, r, reverse);
734 }
735 }
736 } while (delta >= 1);
737}
738
739static int64_t mincross(graph_t *g, int startpass) {
740 const int endpass = 2;
741 int maxthispass = 0, iter, trying, pass;
742 int64_t cur_cross, best_cross;
743
744 if (startpass > 1) {
745 cur_cross = best_cross = ncross();
746 save_best(g);
747 } else
748 cur_cross = best_cross = INT64_MAX;
749 for (pass = startpass; pass <= endpass; pass++) {
750 if (pass <= 1) {
751 maxthispass = MIN(4, MaxIter);
752 if (g == dot_root(g))
753 if (build_ranks(g, pass) != 0) {
754 return -1;
755 }
756 if (pass == 0)
758 flat_reorder(g);
759
760 if ((cur_cross = ncross()) <= best_cross) {
761 save_best(g);
762 best_cross = cur_cross;
763 }
764 } else {
765 maxthispass = MaxIter;
766 if (cur_cross > best_cross)
767 restore_best(g);
768 cur_cross = best_cross;
769 }
770 trying = 0;
771 for (iter = 0; iter < maxthispass; iter++) {
772 if (Verbose)
773 fprintf(stderr,
774 "mincross: pass %d iter %d trying %d cur_cross %" PRId64 " best_cross %"
775 PRId64 "\n",
776 pass, iter, trying, cur_cross, best_cross);
777 if (trying++ >= MinQuit)
778 break;
779 if (cur_cross == 0)
780 break;
781 mincross_step(g, iter);
782 if ((cur_cross = ncross()) <= best_cross) {
783 save_best(g);
784 if (cur_cross < Convergence * (double)best_cross)
785 trying = 0;
786 best_cross = cur_cross;
787 }
788 }
789 if (cur_cross == 0)
790 break;
791 }
792 if (cur_cross > best_cross)
793 restore_best(g);
794 if (best_cross > 0) {
795 transpose(g, false);
796 best_cross = ncross();
797 }
798
799 return best_cross;
800}
801
802static void restore_best(graph_t * g)
803{
804 node_t *n;
805 int i, r;
806
807 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
808 for (i = 0; i < GD_rank(g)[r].n; i++) {
809 n = GD_rank(g)[r].v[i];
810 ND_order(n) = saveorder(n);
811 }
812 }
813 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
814 GD_rank(Root)[r].valid = false;
815 qsort(GD_rank(g)[r].v, GD_rank(g)[r].n, sizeof(GD_rank(g)[0].v[0]),
817 }
818}
819
820static void save_best(graph_t * g)
821{
822 node_t *n;
823 int i, r;
824 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
825 for (i = 0; i < GD_rank(g)[r].n; i++) {
826 n = GD_rank(g)[r].v[i];
827 saveorder(n) = ND_order(n);
828 }
829 }
830}
831
832/* merges the connected components of g */
833static void merge_components(graph_t * g)
834{
835 node_t *u, *v;
836
837 if (GD_comp(g).size <= 1)
838 return;
839 u = NULL;
840 for (size_t c = 0; c < GD_comp(g).size; c++) {
841 v = GD_comp(g).list[c];
842 if (u)
843 ND_next(u) = v;
844 ND_prev(v) = u;
845 while (ND_next(v)) {
846 v = ND_next(v);
847 }
848 u = v;
849 }
850 GD_comp(g).size = 1;
851 GD_nlist(g) = GD_comp(g).list[0];
854}
855
856/* merge connected components, create globally consistent rank lists */
857static void merge2(graph_t * g)
858{
859 int i, r;
860 node_t *v;
861
862 /* merge the components and rank limits */
864
865 /* install complete ranks */
866 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
867 GD_rank(g)[r].n = GD_rank(g)[r].an;
868 GD_rank(g)[r].v = GD_rank(g)[r].av;
869 for (i = 0; i < GD_rank(g)[r].n; i++) {
870 v = GD_rank(g)[r].v[i];
871 if (v == NULL) {
872 if (Verbose)
873 fprintf(stderr,
874 "merge2: graph %s, rank %d has only %d < %d nodes\n",
875 agnameof(g), r, i, GD_rank(g)[r].n);
876 GD_rank(g)[r].n = i;
877 break;
878 }
879 ND_order(v) = i;
880 }
881 }
882}
883
884static void cleanup2(graph_t *g, int64_t nc) {
885 int i, j, r, c;
886 node_t *v;
887 edge_t *e;
888
889 if (TI_list) {
890 free(TI_list);
891 TI_list = NULL;
892 }
893 if (TE_list) {
894 free(TE_list);
895 TE_list = NULL;
896 }
897 /* fix vlists of clusters */
898 for (c = 1; c <= GD_n_cluster(g); c++)
900
901 /* remove node temporary edges for ordering nodes */
902 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
903 for (i = 0; i < GD_rank(g)[r].n; i++) {
904 v = GD_rank(g)[r].v[i];
905 ND_order(v) = i;
906 if (ND_flat_out(v).list) {
907 for (j = 0; (e = ND_flat_out(v).list[j]); j++)
908 if (ED_edge_type(e) == FLATORDER) {
910 free(e->base.data);
911 free(e);
912 j--;
913 }
914 }
915 }
916 free_matrix(GD_rank(g)[r].flat);
917 }
918 if (Verbose)
919 fprintf(stderr, "mincross %s: %" PRId64 " crossings, %.2f secs.\n",
920 agnameof(g), nc, elapsed_sec());
921}
922
923static node_t *neighbor(node_t * v, int dir)
924{
925 node_t *rv = NULL;
926assert(v);
927 if (dir < 0) {
928 if (ND_order(v) > 0)
929 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) - 1];
930 } else
931 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) + 1];
932assert(rv == 0 || (ND_order(rv)-ND_order(v))*dir > 0);
933 return rv;
934}
935
936static bool is_a_normal_node_of(graph_t *g, node_t *v) {
937 return ND_node_type(v) == NORMAL && agcontains(g, v);
938}
939
941 if (ND_node_type(v) == VIRTUAL
942 && ND_in(v).size == 1 && ND_out(v).size == 1) {
943 edge_t *e = ND_out(v).list[0];
944 while (ED_edge_type(e) != NORMAL)
945 e = ED_to_orig(e);
946 if (agcontains(g, e))
947 return true;
948 }
949 return false;
950}
951
952static bool inside_cluster(graph_t *g, node_t *v) {
953 return is_a_normal_node_of(g, v) || is_a_vnode_of_an_edge_of(g, v);
954}
955
956static node_t *furthestnode(graph_t * g, node_t * v, int dir)
957{
958 node_t *rv = v;
959 for (node_t *u = v; (u = neighbor(u, dir)); ) {
960 if (is_a_normal_node_of(g, u))
961 rv = u;
962 else if (is_a_vnode_of_an_edge_of(g, u))
963 rv = u;
964 }
965 return rv;
966}
967
969{
970 int r;
971
972 if (GD_rankleader(g))
973 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
974 GD_rankleader(g)[r] = GD_rank(g)[r].v[0];
975 }
976}
977
979{
980 int c;
981
982 save_vlist(g);
983 for (c = 1; c <= GD_n_cluster(g); c++)
985}
986
987
989{
990 // fix vlists of sub-clusters
991 for (int c = 1; c <= GD_n_cluster(g); c++)
993
994 if (GD_rankleader(g))
995 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
996 node_t *const v = GD_rankleader(g)[r];
997 if (v == NULL) {
998 continue;
999 }
1000#ifdef DEBUG
1001 node_in_root_vlist(v);
1002#endif
1003 node_t *const u = furthestnode(g, v, -1);
1004 node_t *const w = furthestnode(g, v, 1);
1005 GD_rankleader(g)[r] = u;
1006#ifdef DEBUG
1007 assert(GD_rank(dot_root(g))[r].v[ND_order(u)] == u);
1008#endif
1009 GD_rank(g)[r].v = GD_rank(dot_root(g))[r].v + ND_order(u);
1010 GD_rank(g)[r].n = ND_order(w) - ND_order(u) + 1;
1011 }
1012}
1013
1014/* The structures in crossing minimization and positioning require
1015 * that clusters have some node on each rank. This function recursively
1016 * guarantees this property. It takes into account nodes and edges in
1017 * a cluster, the latter causing dummy nodes for intervening ranks.
1018 * For any rank without node, we create a real node of small size. This
1019 * is stored in the subgraph sg, for easy removal later.
1020 *
1021 * I believe it is not necessary to do this for the root graph, as these
1022 * are laid out one component at a time and these will necessarily have a
1023 * node on each rank from source to sink levels.
1024 */
1025static Agraph_t*
1026realFillRanks (Agraph_t* g, int rnks[], int rnks_sz, Agraph_t* sg)
1027{
1028 int i, c;
1029 Agedge_t* e;
1030 Agnode_t* n;
1031
1032 for (c = 1; c <= GD_n_cluster(g); c++)
1033 sg = realFillRanks (GD_clust(g)[c], rnks, rnks_sz, sg);
1034
1035 if (dot_root(g) == g)
1036 return sg;
1037 memset (rnks, 0, sizeof(int)*rnks_sz);
1038 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
1039 rnks[ND_rank(n)] = 1;
1040 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
1041 for (i = ND_rank(n)+1; i <= ND_rank(aghead(e)); i++)
1042 rnks[i] = 1;
1043 }
1044 }
1045 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1046 if (rnks[i] == 0) {
1047 if (!sg) {
1048 sg = agsubg (dot_root(g), "_new_rank", 1);
1049 }
1050 n = agnode (sg, NULL, 1);
1051 agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true);
1052 ND_rank(n) = i;
1053 ND_lw(n) = ND_rw(n) = 0.5;
1054 ND_ht(n) = 1;
1055 ND_UF_size(n) = 1;
1056 alloc_elist(4, ND_in(n));
1057 alloc_elist(4, ND_out(n));
1058 agsubnode (g, n, 1);
1059 }
1060 }
1061 return sg;
1062}
1063
1064static void
1066{
1067 int rnks_sz = GD_maxrank(g) + 2;
1068 int *rnks = gv_calloc(rnks_sz, sizeof(int));
1069 realFillRanks (g, rnks, rnks_sz, NULL);
1070 free (rnks);
1071}
1072
1073static void init_mincross(graph_t * g)
1074{
1075 int size;
1076
1077 if (Verbose)
1078 start_timer();
1079
1080 ReMincross = false;
1081 Root = g;
1082 /* alloc +1 for the null terminator usage in do_ordering() */
1083 size = agnedges(dot_root(g)) + 1;
1084 TE_list = gv_calloc(size, sizeof(edge_t*));
1085 TI_list = gv_calloc(size, sizeof(int));
1087 if (GD_flags(g) & NEW_RANK)
1088 fillRanks (g);
1089 class2(g);
1090 decompose(g, 1);
1091 allocate_ranks(g);
1092 ordered_edges(g);
1095}
1096
1097static void flat_rev(Agraph_t * g, Agedge_t * e)
1098{
1099 int j;
1100 Agedge_t *rev;
1101
1102 if (!ND_flat_out(aghead(e)).list)
1103 rev = NULL;
1104 else
1105 for (j = 0; (rev = ND_flat_out(aghead(e)).list[j]); j++)
1106 if (aghead(rev) == agtail(e))
1107 break;
1108 if (rev) {
1109 merge_oneway(e, rev);
1110 if (ED_edge_type(rev) == FLATORDER && ED_to_orig(rev) == 0)
1111 ED_to_orig(rev) = e;
1113 } else {
1114 rev = new_virtual_edge(aghead(e), agtail(e), e);
1115 if (ED_edge_type(e) == FLATORDER)
1116 ED_edge_type(rev) = FLATORDER;
1117 else
1118 ED_edge_type(rev) = REVERSED;
1119 ED_label(rev) = ED_label(e);
1120 flat_edge(g, rev);
1121 }
1122}
1123
1124static void flat_search(graph_t * g, node_t * v)
1125{
1126 int i;
1127 bool hascl;
1128 edge_t *e;
1129 adjmatrix_t *M = GD_rank(g)[ND_rank(v)].flat;
1130
1131 ND_mark(v) = true;
1132 ND_onstack(v) = true;
1133 hascl = GD_n_cluster(dot_root(g)) > 0;
1134 if (ND_flat_out(v).list)
1135 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1136 if (hascl && !(agcontains(g, agtail(e)) && agcontains(g, aghead(e))))
1137 continue;
1138 if (ED_weight(e) == 0)
1139 continue;
1140 if (ND_onstack(aghead(e))) {
1141 assert(flatindex(aghead(e)) < M->nrows);
1142 assert(flatindex(agtail(e)) < M->ncols);
1143 matrix_set(M, (size_t)flatindex(aghead(e)), (size_t)flatindex(agtail(e)));
1145 i--;
1146 if (ED_edge_type(e) == FLATORDER)
1147 continue;
1148 flat_rev(g, e);
1149 } else {
1150 assert(flatindex(aghead(e)) < M->nrows);
1151 assert(flatindex(agtail(e)) < M->ncols);
1152 matrix_set(M, (size_t)flatindex(agtail(e)), (size_t)flatindex(aghead(e)));
1153 if (!ND_mark(aghead(e)))
1154 flat_search(g, aghead(e));
1155 }
1156 }
1157 ND_onstack(v) = false;
1158}
1159
1161{
1162 int i, r;
1163 node_t *v;
1164
1165 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1166 bool flat = false;
1167 for (i = 0; i < GD_rank(g)[r].n; i++) {
1168 v = GD_rank(g)[r].v[i];
1169 ND_mark(v) = false;
1170 ND_onstack(v) = false;
1171 ND_low(v) = i;
1172 if (ND_flat_out(v).size > 0 && !flat) {
1173 GD_rank(g)[r].flat =
1174 new_matrix((size_t)GD_rank(g)[r].n, (size_t)GD_rank(g)[r].n);
1175 flat = true;
1176 }
1177 }
1178 if (flat) {
1179 for (i = 0; i < GD_rank(g)[r].n; i++) {
1180 v = GD_rank(g)[r].v[i];
1181 if (!ND_mark(v))
1182 flat_search(g, v);
1183 }
1184 }
1185 }
1186}
1187
1188/* Allocate rank structure, determining number of nodes per rank.
1189 * Note that no nodes are put into the structure yet.
1190 */
1192{
1193 int r, low, high;
1194 node_t *n;
1195 edge_t *e;
1196
1197 int *cn = gv_calloc(GD_maxrank(g) + 2, sizeof(int)); // must be 0 based, not GD_minrank
1198 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
1199 cn[ND_rank(n)]++;
1200 for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
1201 low = ND_rank(agtail(e));
1202 high = ND_rank(aghead(e));
1203 if (low > high) {
1204 SWAP(&low, &high);
1205 }
1206 for (r = low + 1; r < high; r++)
1207 cn[r]++;
1208 }
1209 }
1210 GD_rank(g) = gv_calloc(GD_maxrank(g) + 2, sizeof(rank_t));
1211 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1212 GD_rank(g)[r].an = GD_rank(g)[r].n = cn[r] + 1;
1213 GD_rank(g)[r].av = GD_rank(g)[r].v = gv_calloc(cn[r] + 1, sizeof(node_t*));
1214 }
1215 free(cn);
1216}
1217
1218/* install a node at the current right end of its rank */
1220 int i, r;
1221
1222 r = ND_rank(n);
1223 i = GD_rank(g)[r].n;
1224 if (GD_rank(g)[r].an <= 0) {
1225 agerrorf("install_in_rank, line %d: %s %s rank %d i = %d an = 0\n",
1226 __LINE__, agnameof(g), agnameof(n), r, i);
1227 return -1;
1228 }
1229
1230 GD_rank(g)[r].v[i] = n;
1231 ND_order(n) = i;
1232 GD_rank(g)[r].n++;
1233 assert(GD_rank(g)[r].n <= GD_rank(g)[r].an);
1234#ifdef DEBUG
1235 {
1236 node_t *v;
1237
1238 for (v = GD_nlist(g); v; v = ND_next(v))
1239 if (v == n)
1240 break;
1241 assert(v != NULL);
1242 }
1243#endif
1244 if (ND_order(n) > GD_rank(Root)[r].an) {
1245 agerrorf("install_in_rank, line %d: ND_order(%s) [%d] > GD_rank(Root)[%d].an [%d]\n",
1246 __LINE__, agnameof(n), ND_order(n), r, GD_rank(Root)[r].an);
1247 return -1;
1248 }
1249 if (r < GD_minrank(g) || r > GD_maxrank(g)) {
1250 agerrorf("install_in_rank, line %d: rank %d not in rank range [%d,%d]\n",
1251 __LINE__, r, GD_minrank(g), GD_maxrank(g));
1252 return -1;
1253 }
1254 if (GD_rank(g)[r].v + ND_order(n) >
1255 GD_rank(g)[r].av + GD_rank(Root)[r].an) {
1256 agerrorf("install_in_rank, line %d: GD_rank(g)[%d].v + ND_order(%s) [%d] > GD_rank(g)[%d].av + GD_rank(Root)[%d].an [%d]\n",
1257 __LINE__, r, agnameof(n),ND_order(n), r, r, GD_rank(Root)[r].an);
1258 return -1;
1259 }
1260 return 0;
1261}
1262
1263/* install nodes in ranks. the initial ordering ensure that series-parallel
1264 * graphs such as trees are drawn with no crossings. it tries searching
1265 * in- and out-edges and takes the better of the two initial orderings.
1266 */
1267int build_ranks(graph_t *g, int pass) {
1268 int i, j;
1269 node_t *n, *ns;
1270 edge_t **otheredges;
1271 node_queue_t q = {0};
1272 for (n = GD_nlist(g); n; n = ND_next(n))
1273 MARK(n) = false;
1274
1275#ifdef DEBUG
1276 {
1277 edge_t *e;
1278 for (n = GD_nlist(g); n; n = ND_next(n)) {
1279 for (i = 0; (e = ND_out(n).list[i]); i++)
1280 assert(!MARK(aghead(e)));
1281 for (i = 0; (e = ND_in(n).list[i]); i++)
1282 assert(!MARK(agtail(e)));
1283 }
1284 }
1285#endif
1286
1287 for (i = GD_minrank(g); i <= GD_maxrank(g); i++)
1288 GD_rank(g)[i].n = 0;
1289
1290 const bool walkbackwards = g != agroot(g); // if this is a cluster, need to
1291 // walk GD_nlist backward to
1292 // preserve input node order
1293 if (walkbackwards) {
1294 for (ns = GD_nlist(g); ND_next(ns); ns = ND_next(ns)) {
1295 ;
1296 }
1297 } else {
1298 ns = GD_nlist(g);
1299 }
1300 for (n = ns; n; n = walkbackwards ? ND_prev(n) : ND_next(n)) {
1301 otheredges = pass == 0 ? ND_in(n).list : ND_out(n).list;
1302 if (otheredges[0] != NULL)
1303 continue;
1304 if (!MARK(n)) {
1305 MARK(n) = true;
1306 node_queue_push_back(&q, n);
1307 while (!node_queue_is_empty(&q)) {
1308 node_t *n0 = node_queue_pop_front(&q);
1309 if (ND_ranktype(n0) != CLUSTER) {
1310 if (install_in_rank(g, n0) != 0) {
1311 node_queue_free(&q);
1312 return -1;
1313 }
1314 enqueue_neighbors(&q, n0, pass);
1315 } else {
1316 const int rc = install_cluster(g, n0, pass, &q);
1317 if (rc != 0) {
1318 node_queue_free(&q);
1319 return rc;
1320 }
1321 }
1322 }
1323 }
1324 }
1325 assert(node_queue_is_empty(&q));
1326 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1327 GD_rank(Root)[i].valid = false;
1328 if (GD_flip(g) && GD_rank(g)[i].n > 0) {
1329 node_t **vlist = GD_rank(g)[i].v;
1330 int num_nodes_1 = GD_rank(g)[i].n - 1;
1331 int half_num_nodes_1 = num_nodes_1 / 2;
1332 for (j = 0; j <= half_num_nodes_1; j++)
1333 exchange(vlist[j], vlist[num_nodes_1 - j]);
1334 }
1335 }
1336
1337 if (g == dot_root(g) && ncross() > 0)
1338 transpose(g, false);
1339 node_queue_free(&q);
1340 return 0;
1341}
1342
1343void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass) {
1344 edge_t *e;
1345
1346 if (pass == 0) {
1347 for (size_t i = 0; i < ND_out(n0).size; i++) {
1348 e = ND_out(n0).list[i];
1349 if (!MARK(aghead(e))) {
1350 MARK(aghead(e)) = true;
1351 node_queue_push_back(q, aghead(e));
1352 }
1353 }
1354 } else {
1355 for (size_t i = 0; i < ND_in(n0).size; i++) {
1356 e = ND_in(n0).list[i];
1357 if (!MARK(agtail(e))) {
1358 MARK(agtail(e)) = true;
1359 node_queue_push_back(q, agtail(e));
1360 }
1361 }
1362 }
1363}
1364
1366 if (ED_weight(e) == 0)
1367 return false;
1368 if (!inside_cluster(g, agtail(e)))
1369 return false;
1370 if (!inside_cluster(g, aghead(e)))
1371 return false;
1372 return true;
1373}
1374
1375DEFINE_LIST(nodes, node_t *)
1376
1377/* construct nodes reachable from 'here' in post-order.
1378* This is the same as doing a topological sort in reverse order.
1379*/
1380static void postorder(graph_t *g, node_t *v, nodes_t *list, int r) {
1381 edge_t *e;
1382 int i;
1383
1384 MARK(v) = true;
1385 if (ND_flat_out(v).size > 0) {
1386 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1387 if (!constraining_flat_edge(g, e)) continue;
1388 if (!MARK(aghead(e)))
1389 postorder(g, aghead(e), list, r);
1390 }
1391 }
1392 assert(ND_rank(v) == r);
1393 nodes_append(list, v);
1394}
1395
1396static void flat_reorder(graph_t * g)
1397{
1398 int i, r, local_in_cnt, local_out_cnt, base_order;
1399 node_t *v;
1400 nodes_t temprank = {0};
1401 edge_t *flat_e, *e;
1402
1403 if (!GD_has_flat_edges(g))
1404 return;
1405 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1406 if (GD_rank(g)[r].n == 0) continue;
1407 base_order = ND_order(GD_rank(g)[r].v[0]);
1408 for (i = 0; i < GD_rank(g)[r].n; i++)
1409 MARK(GD_rank(g)[r].v[i]) = false;
1410 nodes_clear(&temprank);
1411
1412 /* construct reverse topological sort order in temprank */
1413 for (i = 0; i < GD_rank(g)[r].n; i++) {
1414 if (GD_flip(g)) v = GD_rank(g)[r].v[i];
1415 else v = GD_rank(g)[r].v[GD_rank(g)[r].n - i - 1];
1416
1417 local_in_cnt = local_out_cnt = 0;
1418 for (size_t j = 0; j < ND_flat_in(v).size; j++) {
1419 flat_e = ND_flat_in(v).list[j];
1420 if (constraining_flat_edge(g, flat_e)) local_in_cnt++;
1421 }
1422 for (size_t j = 0; j < ND_flat_out(v).size; j++) {
1423 flat_e = ND_flat_out(v).list[j];
1424 if (constraining_flat_edge(g, flat_e)) local_out_cnt++;
1425 }
1426 if (local_in_cnt == 0 && local_out_cnt == 0)
1427 nodes_append(&temprank, v);
1428 else {
1429 if (!MARK(v) && local_in_cnt == 0) {
1430 postorder(g, v, &temprank, r);
1431 }
1432 }
1433 }
1434
1435 if (nodes_size(&temprank) > 0) {
1436 if (!GD_flip(g)) {
1437 nodes_reverse(&temprank);
1438 }
1439 for (i = 0; i < GD_rank(g)[r].n; i++) {
1440 v = GD_rank(g)[r].v[i] = nodes_get(&temprank, (size_t)i);
1441 ND_order(v) = i + base_order;
1442 }
1443
1444 /* nonconstraint flat edges must be made LR */
1445 for (i = 0; i < GD_rank(g)[r].n; i++) {
1446 v = GD_rank(g)[r].v[i];
1447 if (ND_flat_out(v).list) {
1448 for (size_t j = 0; (e = ND_flat_out(v).list[j]); j++) {
1449 if ((!GD_flip(g) && ND_order(aghead(e)) < ND_order(agtail(e))) ||
1450 (GD_flip(g) && ND_order(aghead(e)) > ND_order(agtail(e)))) {
1451 assert(!constraining_flat_edge(g, e));
1453 j--;
1454 flat_rev(g, e);
1455 }
1456 }
1457 }
1458 }
1459 /* postprocess to restore intended order */
1460 }
1461 /* else do no harm! */
1462 GD_rank(Root)[r].valid = false;
1463 }
1464 nodes_free(&temprank);
1465}
1466
1467static void reorder(graph_t * g, int r, bool reverse, bool hasfixed)
1468{
1469 int changed = 0, nelt;
1470 node_t **vlist = GD_rank(g)[r].v;
1471 node_t **lp, **rp, **ep = vlist + GD_rank(g)[r].n;
1472
1473 for (nelt = GD_rank(g)[r].n - 1; nelt >= 0; nelt--) {
1474 lp = vlist;
1475 while (lp < ep) {
1476 /* find leftmost node that can be compared */
1477 while (lp < ep && ND_mval(*lp) < 0)
1478 lp++;
1479 if (lp >= ep)
1480 break;
1481 /* find the node that can be compared */
1482 bool sawclust = false;
1483 bool muststay = false;
1484 for (rp = lp + 1; rp < ep; rp++) {
1485 if (sawclust && ND_clust(*rp))
1486 continue; /* ### */
1487 if (left2right(g, *lp, *rp)) {
1488 muststay = true;
1489 break;
1490 }
1491 if (ND_mval(*rp) >= 0)
1492 break;
1493 if (ND_clust(*rp))
1494 sawclust = true; /* ### */
1495 }
1496 if (rp >= ep)
1497 break;
1498 if (!muststay) {
1499 const double p1 = ND_mval(*lp);
1500 const double p2 = ND_mval(*rp);
1501 if (p1 > p2 || (p1 >= p2 && reverse)) {
1502 exchange(*lp, *rp);
1503 changed++;
1504 }
1505 }
1506 lp = rp;
1507 }
1508 if (!hasfixed && !reverse)
1509 ep--;
1510 }
1511
1512 if (changed) {
1513 GD_rank(Root)[r].valid = false;
1514 if (r > 0)
1515 GD_rank(Root)[r - 1].valid = false;
1516 }
1517}
1518
1519static void mincross_step(graph_t * g, int pass)
1520{
1521 int r, other, first, last, dir;
1522
1523 bool reverse = pass % 4 < 2;
1524
1525 if (pass % 2 == 0) { /* down pass */
1526 first = GD_minrank(g) + 1;
1527 if (GD_minrank(g) > GD_minrank(Root))
1528 first--;
1529 last = GD_maxrank(g);
1530 dir = 1;
1531 } else { /* up pass */
1532 first = GD_maxrank(g) - 1;
1533 last = GD_minrank(g);
1534 if (GD_maxrank(g) < GD_maxrank(Root))
1535 first++;
1536 dir = -1;
1537 }
1538
1539 for (r = first; r != last + dir; r += dir) {
1540 other = r - dir;
1541 bool hasfixed = medians(g, r, other);
1542 reorder(g, r, reverse, hasfixed);
1543 }
1544 transpose(g, !reverse);
1545}
1546
1547static int local_cross(elist l, int dir)
1548{
1549 int i, j;
1550 int cross = 0;
1551 edge_t *e, *f;
1552 bool is_out = dir > 0;
1553 for (i = 0; (e = l.list[i]); i++) {
1554 if (is_out)
1555 for (j = i + 1; (f = l.list[j]); j++) {
1556 if ((ND_order(aghead(f)) - ND_order(aghead(e)))
1557 * (ED_tail_port(f).p.x - ED_tail_port(e).p.x) < 0)
1558 cross += ED_xpenalty(e) * ED_xpenalty(f);
1559 } else
1560 for (j = i + 1; (f = l.list[j]); j++) {
1561 if ((ND_order(agtail(f)) - ND_order(agtail(e)))
1562 * (ED_head_port(f).p.x - ED_head_port(e).p.x) < 0)
1563 cross += ED_xpenalty(e) * ED_xpenalty(f);
1564 }
1565 }
1566 return cross;
1567}
1568
1569static int64_t rcross(graph_t *g, int r) {
1570 int top, bot, max, i, k;
1571 node_t **rtop, *v;
1572
1573 int64_t cross = 0;
1574 max = 0;
1575 rtop = GD_rank(g)[r].v;
1576
1577 int *Count = gv_calloc(GD_rank(Root)[r + 1].n + 1, sizeof(int));
1578
1579 for (top = 0; top < GD_rank(g)[r].n; top++) {
1580 edge_t *e;
1581 if (max > 0) {
1582 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1583 for (k = ND_order(aghead(e)) + 1; k <= max; k++)
1584 cross += Count[k] * ED_xpenalty(e);
1585 }
1586 }
1587 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1588 int inv = ND_order(aghead(e));
1589 if (inv > max)
1590 max = inv;
1591 Count[inv] += ED_xpenalty(e);
1592 }
1593 }
1594 for (top = 0; top < GD_rank(g)[r].n; top++) {
1595 v = GD_rank(g)[r].v[top];
1596 if (ND_has_port(v))
1597 cross += local_cross(ND_out(v), 1);
1598 }
1599 for (bot = 0; bot < GD_rank(g)[r + 1].n; bot++) {
1600 v = GD_rank(g)[r + 1].v[bot];
1601 if (ND_has_port(v))
1602 cross += local_cross(ND_in(v), -1);
1603 }
1604 free(Count);
1605 return cross;
1606}
1607
1608static int64_t ncross(void) {
1609 int r;
1610
1611 graph_t *g = Root;
1612 int64_t count = 0;
1613 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
1614 if (GD_rank(g)[r].valid)
1615 count += GD_rank(g)[r].cache_nc;
1616 else {
1617 const int64_t nc = GD_rank(g)[r].cache_nc = rcross(g, r);
1618 count += nc;
1619 GD_rank(g)[r].valid = true;
1620 }
1621 }
1622 return count;
1623}
1624
1625static int ordercmpf(const void *x, const void *y) {
1626 const int *i0 = x;
1627 const int *i1 = y;
1628 if (*i0 < *i1) {
1629 return -1;
1630 }
1631 if (*i0 > *i1) {
1632 return 1;
1633 }
1634 return 0;
1635}
1636
1637/* Calculate a mval for nodes with no in or out non-flat edges.
1638 * Assume (ND_out(n).size == 0) && (ND_in(n).size == 0)
1639 * Find flat edge a->n where a has the largest order and set
1640 * n.mval = a.mval+1, assuming a.mval is defined (>=0).
1641 * If there are no flat in edges, find flat edge n->a where a
1642 * has the smallest order and set * n.mval = a.mval-1, assuming
1643 * a.mval is > 0.
1644 * Return true if n.mval is left -1, indicating a fixed node for sorting.
1645 */
1646static bool flat_mval(node_t * n)
1647{
1648 int i;
1649 edge_t *e, **fl;
1650 node_t *nn;
1651
1652 if (ND_flat_in(n).size > 0) {
1653 fl = ND_flat_in(n).list;
1654 nn = agtail(fl[0]);
1655 for (i = 1; (e = fl[i]); i++)
1656 if (ND_order(agtail(e)) > ND_order(nn))
1657 nn = agtail(e);
1658 if (ND_mval(nn) >= 0) {
1659 ND_mval(n) = ND_mval(nn) + 1;
1660 return false;
1661 }
1662 } else if (ND_flat_out(n).size > 0) {
1663 fl = ND_flat_out(n).list;
1664 nn = aghead(fl[0]);
1665 for (i = 1; (e = fl[i]); i++)
1666 if (ND_order(aghead(e)) < ND_order(nn))
1667 nn = aghead(e);
1668 if (ND_mval(nn) > 0) {
1669 ND_mval(n) = ND_mval(nn) - 1;
1670 return false;
1671 }
1672 }
1673 return true;
1674}
1675
1676#define VAL(node,port) (MC_SCALE * ND_order(node) + (port).order)
1677
1678static bool medians(graph_t * g, int r0, int r1)
1679{
1680 int i, j0, lspan, rspan, *list;
1681 node_t *n, **v;
1682 edge_t *e;
1683 bool hasfixed = false;
1684
1685 list = TI_list;
1686 v = GD_rank(g)[r0].v;
1687 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1688 n = v[i];
1689 size_t j = 0;
1690 if (r1 > r0)
1691 for (j0 = 0; (e = ND_out(n).list[j0]); j0++) {
1692 if (ED_xpenalty(e) > 0)
1693 list[j++] = VAL(aghead(e), ED_head_port(e));
1694 } else
1695 for (j0 = 0; (e = ND_in(n).list[j0]); j0++) {
1696 if (ED_xpenalty(e) > 0)
1697 list[j++] = VAL(agtail(e), ED_tail_port(e));
1698 }
1699 switch (j) {
1700 case 0:
1701 ND_mval(n) = -1;
1702 break;
1703 case 1:
1704 ND_mval(n) = list[0];
1705 break;
1706 case 2:
1707 ND_mval(n) = (list[0] + list[1]) / 2;
1708 break;
1709 default:
1710 qsort(list, j, sizeof(int), ordercmpf);
1711 if (j % 2)
1712 ND_mval(n) = list[j / 2];
1713 else {
1714 /* weighted median */
1715 size_t rm = j / 2;
1716 size_t lm = rm - 1;
1717 rspan = list[j - 1] - list[rm];
1718 lspan = list[lm] - list[0];
1719 if (lspan == rspan)
1720 ND_mval(n) = (list[lm] + list[rm]) / 2;
1721 else {
1722 double w = list[lm] * (double)rspan + list[rm] * (double)lspan;
1723 ND_mval(n) = w / (lspan + rspan);
1724 }
1725 }
1726 }
1727 }
1728 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1729 n = v[i];
1730 if (ND_out(n).size == 0 && ND_in(n).size == 0)
1731 hasfixed |= flat_mval(n);
1732 }
1733 return hasfixed;
1734}
1735
1736static int nodeposcmpf(const void *x, const void *y) {
1737// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1738// as the later usage is const. We need the cast because the macros use
1739// non-const pointers for genericity.
1740#ifdef __GNUC__
1741#pragma GCC diagnostic push
1742#pragma GCC diagnostic ignored "-Wcast-qual"
1743#endif
1744 node_t **n0 = (node_t **)x;
1745 node_t **n1 = (node_t **)y;
1746#ifdef __GNUC__
1747#pragma GCC diagnostic pop
1748#endif
1749 if (ND_order(*n0) < ND_order(*n1)) {
1750 return -1;
1751 }
1752 if (ND_order(*n0) > ND_order(*n1)) {
1753 return 1;
1754 }
1755 return 0;
1756}
1757
1758static int edgeidcmpf(const void *x, const void *y) {
1759// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1760// as the later usage is const. We need the cast because the macros use
1761// non-const pointers for genericity.
1762#ifdef __GNUC__
1763#pragma GCC diagnostic push
1764#pragma GCC diagnostic ignored "-Wcast-qual"
1765#endif
1766 edge_t **e0 = (edge_t **)x;
1767 edge_t **e1 = (edge_t **)y;
1768#ifdef __GNUC__
1769#pragma GCC diagnostic pop
1770#endif
1771 if (AGSEQ(*e0) < AGSEQ(*e1)) {
1772 return -1;
1773 }
1774 if (AGSEQ(*e0) > AGSEQ(*e1)) {
1775 return 1;
1776 }
1777 return 0;
1778}
1779
1780/* following code deals with weights of edges of "virtual" nodes */
1781#define ORDINARY 0
1782#define SINGLETON 1
1783#define VIRTUALNODE 2
1784#define NTYPES 3
1785
1786#define C_EE 1
1787#define C_VS 2
1788#define C_SS 2
1789#define C_VV 4
1790
1791static int table[NTYPES][NTYPES] = {
1792 /* ordinary */ {C_EE, C_EE, C_EE},
1793 /* singleton */ {C_EE, C_SS, C_VS},
1794 /* virtual */ {C_EE, C_VS, C_VV}
1795};
1796
1797static int endpoint_class(node_t * n)
1798{
1799 if (ND_node_type(n) == VIRTUAL)
1800 return VIRTUALNODE;
1801 if (ND_weight_class(n) <= 1)
1802 return SINGLETON;
1803 return ORDINARY;
1804}
1805
1807{
1808 int t;
1810
1811 /* check whether the upcoming computation will overflow */
1812 assert(t >= 0);
1813 if (INT_MAX / t < ED_weight(e)) {
1814 agerrorf("overflow when calculating virtual weight of edge\n");
1815 graphviz_exit(EXIT_FAILURE);
1816 }
1817
1818 ED_weight(e) *= t;
1819}
1820
1821#ifdef DEBUG
1822void check_rs(graph_t * g, int null_ok)
1823{
1824 int i, r;
1825 node_t *v, *prev;
1826
1827 fprintf(stderr, "\n\n%s:\n", agnameof(g));
1828 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1829 fprintf(stderr, "%d: ", r);
1830 prev = NULL;
1831 for (i = 0; i < GD_rank(g)[r].n; i++) {
1832 v = GD_rank(g)[r].v[i];
1833 if (v == NULL) {
1834 fprintf(stderr, "NULL\t");
1835 if (!null_ok)
1836 abort();
1837 } else {
1838 fprintf(stderr, "%s(%f)\t", agnameof(v), ND_mval(v));
1839 assert(ND_rank(v) == r);
1840 assert(v != prev);
1841 prev = v;
1842 }
1843 }
1844 fprintf(stderr, "\n");
1845 }
1846}
1847
1848void check_order(void)
1849{
1850 int i, r;
1851 node_t *v;
1852 graph_t *g = Root;
1853
1854 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1855 assert(GD_rank(g)[r].v[GD_rank(g)[r].n] == NULL);
1856 for (i = 0; (v = GD_rank(g)[r].v[i]); i++) {
1857 assert(ND_rank(v) == r);
1858 assert(ND_order(v) == i);
1859 }
1860 }
1861}
1862#endif
1863
1865{
1866 char *p;
1867 double f;
1868
1869 /* set default values */
1870 MinQuit = 8;
1871 MaxIter = 24;
1872
1873 p = agget(g, "mclimit");
1874 if (p && (f = atof(p)) > 0.0) {
1875 MinQuit = MAX(1, scale_clamp(MinQuit, f));
1876 MaxIter = MAX(1, scale_clamp(MaxIter, f));
1877 }
1878}
1879
1880#ifdef DEBUG
1881void check_exchange(node_t * v, node_t * w)
1882{
1883 int i, r;
1884 node_t *u;
1885
1886 if (ND_clust(v) == NULL && ND_clust(w) == NULL)
1887 return;
1888 assert(ND_clust(v) == NULL || ND_clust(w) == NULL);
1889 assert(ND_rank(v) == ND_rank(w));
1890 assert(ND_order(v) < ND_order(w));
1891 r = ND_rank(v);
1892
1893 for (i = ND_order(v) + 1; i < ND_order(w); i++) {
1894 u = GD_rank(dot_root(v))[r].v[i];
1895 if (ND_clust(u))
1896 abort();
1897 }
1898}
1899
1900void check_vlists(graph_t * g)
1901{
1902 int c, i, j, r;
1903 node_t *u;
1904
1905 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1906 for (i = 0; i < GD_rank(g)[r].n; i++) {
1907 u = GD_rank(g)[r].v[i];
1908 j = ND_order(u);
1909 assert(GD_rank(Root)[r].v[j] == u);
1910 }
1911 if (GD_rankleader(g)) {
1912 u = GD_rankleader(g)[r];
1913 j = ND_order(u);
1914 assert(GD_rank(Root)[r].v[j] == u);
1915 }
1916 }
1917 for (c = 1; c <= GD_n_cluster(g); c++)
1918 check_vlists(GD_clust(g)[c]);
1919}
1920
1921void node_in_root_vlist(node_t * n)
1922{
1923 node_t **vptr;
1924
1925 for (vptr = GD_rank(Root)[ND_rank(n)].v; *vptr; vptr++)
1926 if (*vptr == n)
1927 break;
1928 if (*vptr == 0)
1929 abort();
1930}
1931#endif /* DEBUG code */
static agxbuf last
last message
Definition agerror.c:29
Memory allocation wrappers that exit on failure.
static void * gv_recalloc(void *ptr, size_t old_nmemb, size_t new_nmemb, size_t size)
Definition alloc.h:73
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
static void * gv_alloc(size_t size)
Definition alloc.h:47
#define MIN(a, b)
Definition arith.h:28
abstract graph C library, Cgraph API
void class2(graph_t *g)
Definition class2.c:153
#define exchange(h, i, j)
Definition closest.c:85
bool mapbool(const char *p)
Definition utils.c:337
char * late_string(void *obj, attrsym_t *attr, char *defaultValue)
Definition utils.c:80
#define NORMAL
Definition const.h:24
#define FLATORDER
Definition const.h:28
#define NEW_RANK
Definition const.h:257
#define VIRTUAL
Definition const.h:25
#define CLUSTER
Definition const.h:40
#define REVERSED
Definition const.h:27
void decompose(graph_t *g, int pass)
Definition decomp.c:106
Agraph_t * dot_root(void *p)
Definition dotinit.c:525
bool is_cluster(Agraph_t *)
Definition rank.c:528
void flat_edge(Agraph_t *, Agedge_t *)
Definition fastgr.c:213
void merge_oneway(Agedge_t *, Agedge_t *)
Definition fastgr.c:287
Agedge_t * new_virtual_edge(Agnode_t *, Agnode_t *, Agedge_t *)
Definition fastgr.c:129
Agedge_t * find_flat_edge(Agnode_t *, Agnode_t *)
Definition fastgr.c:54
void delete_flat_edge(Agedge_t *)
Definition fastgr.c:220
static NORETURN void graphviz_exit(int status)
Definition exit.h:23
int MaxIter
Definition globals.h:61
Agsym_t * G_ordering
Definition globals.h:71
Agsym_t * N_ordering
Definition globals.h:77
static bool Verbose
Definition gml2gv.c:23
void free(void *)
node NULL
Definition grammar.y:180
static int cnt(Dict_t *d, Dtlink_t **set)
Definition graph.c:198
int agnedges(Agraph_t *g)
Definition graph.c:163
int agdegree(Agraph_t *g, Agnode_t *n, int in, int out)
Definition graph.c:225
int agnnodes(Agraph_t *g)
Definition graph.c:157
char * agget(void *obj, char *name)
Definition attr.c:448
#define ED_to_orig(e)
Definition types.h:598
Agedge_t * agedge(Agraph_t *g, Agnode_t *t, Agnode_t *h, char *name, int createflag)
Definition edge.c:253
int agdeledge(Agraph_t *g, Agedge_t *arg_e)
Definition edge.c:327
Agedge_t * agnxtin(Agraph_t *g, Agedge_t *e)
Definition edge.c:71
#define ED_xpenalty(e)
Definition types.h:601
Agedge_t * agfstout(Agraph_t *g, Agnode_t *n)
Definition edge.c:26
#define agtail(e)
Definition cgraph.h:988
#define ED_edge_type(e)
Definition types.h:582
#define ED_weight(e)
Definition types.h:603
#define aghead(e)
Definition cgraph.h:989
Agedge_t * agnxtout(Agraph_t *g, Agedge_t *e)
Definition edge.c:41
#define ED_head_port(e)
Definition types.h:588
Agedge_t * agfstin(Agraph_t *g, Agnode_t *n)
Definition edge.c:57
#define ED_label(e)
Definition types.h:589
#define ED_tail_port(e)
Definition types.h:597
void agwarningf(const char *fmt,...)
Definition agerror.c:173
void agerrorf(const char *fmt,...)
Definition agerror.c:165
#define GD_minrank(g)
Definition types.h:384
#define GD_maxrank(g)
Definition types.h:382
#define GD_clust(g)
Definition types.h:360
int agclose(Agraph_t *g)
deletes a graph, freeing its associated storage
Definition graph.c:95
#define GD_flags(g)
Definition types.h:365
#define GD_rank(g)
Definition types.h:395
#define GD_has_flat_edges(g)
Definition types.h:370
#define GD_nlist(g)
Definition types.h:393
Agdesc_t Agstrictdirected
strict directed. A strict graph cannot have multi-edges or self-arcs.
Definition graph.c:273
#define GD_n_cluster(g)
Definition types.h:389
Agraph_t * agopen(char *name, Agdesc_t desc, Agdisc_t *disc)
creates a new graph with the given name and kind
Definition graph.c:42
#define GD_comp(g)
Definition types.h:362
#define GD_flip(g)
Definition types.h:378
#define GD_rankleader(g)
Definition types.h:396
Agnode_t * agnode(Agraph_t *g, char *name, int createflag)
Definition node.c:141
#define ND_rank(n)
Definition types.h:523
#define ND_prev(n)
Definition types.h:521
#define ND_ht(n)
Definition types.h:500
Agnode_t * agnxtnode(Agraph_t *g, Agnode_t *n)
Definition node.c:48
Agnode_t * agfstnode(Agraph_t *g)
Definition node.c:41
#define ND_has_port(n)
Definition types.h:495
#define ND_next(n)
Definition types.h:510
Agnode_t * agsubnode(Agraph_t *g, Agnode_t *n, int createflag)
Definition node.c:252
#define ND_clust(n)
Definition types.h:489
#define ND_other(n)
Definition types.h:514
#define ND_alg(n)
Definition types.h:484
#define ND_flat_out(n)
Definition types.h:493
#define ND_rw(n)
Definition types.h:525
#define ND_node_type(n)
Definition types.h:511
#define ND_lw(n)
Definition types.h:506
#define ND_mval(n)
Definition types.h:508
int agdelnode(Agraph_t *g, Agnode_t *arg_n)
removes a node from a graph or subgraph.
Definition node.c:190
#define ND_order(n)
Definition types.h:513
#define ND_UF_size(n)
Definition types.h:487
#define ND_weight_class(n)
Definition types.h:535
#define ND_low(n)
Definition types.h:505
#define ND_ranktype(n)
Definition types.h:524
#define ND_flat_in(n)
Definition types.h:492
#define ND_in(n)
Definition types.h:501
#define ND_out(n)
Definition types.h:515
char * agnameof(void *)
returns a string descriptor for the object.
Definition id.c:143
int agcontains(Agraph_t *, void *obj)
returns non-zero if obj is a member of (sub)graph
Definition obj.c:233
Agraph_t * agroot(void *obj)
Definition obj.c:168
#define AGSEQ(obj)
Definition cgraph.h:225
void * agbindrec(void *obj, const char *name, unsigned int recsize, int move_to_front)
attaches a new record of the given size to the object
Definition rec.c:89
Agraph_t * agfstsubg(Agraph_t *g)
Definition subg.c:73
Agraph_t * agnxtsubg(Agraph_t *subg)
Definition subg.c:78
Agraph_t * agsubg(Agraph_t *g, char *name, int cflag)
Definition subg.c:53
static void indent(int ix)
Definition gv2gml.c:94
bool rm(Agraph_t *g)
Definition gv.cpp:584
Arithmetic helper functions.
static int scale_clamp(int original, double scale)
scale up or down a non-negative integer, clamping to [0, INT_MAX]
Definition gv_math.h:73
#define SWAP(a, b)
Definition gv_math.h:131
$2 u p prev
Definition htmlparse.y:297
rows row
Definition htmlparse.y:326
static double cross(double *u, double *v)
#define ITOS(i)
Definition itos.h:43
#define ND_onstack(n)
Definition acyclic.c:29
#define ND_mark(n)
Definition acyclic.c:28
static Agedge_t * top(edge_stack_t *sp)
Definition tred.c:73
int install_cluster(graph_t *g, node_t *n, int pass, node_queue_t *q)
Definition cluster.c:378
int expand_cluster(graph_t *subg)
Definition cluster.c:278
void mark_lowclusters(Agraph_t *root)
Definition cluster.c:398
#define DEFINE_LIST(name, type)
Definition list.h:22
#define neighbor(t, i, edim, elist)
Definition make_map.h:41
#define delta
Definition maze.c:136
#define isBackedge(e)
Definition mincross.c:233
static int betweenclust(edge_t *e)
Definition mincross.c:473
#define ND_hi(n)
Definition mincross.c:217
#define flatindex(v)
Definition mincross.c:86
static void free_matrix(adjmatrix_t *p)
Definition mincross.c:453
static bool ReMincross
Definition mincross.c:127
static bool flat_mval(node_t *n)
Definition mincross.c:1646
static bool inside_cluster(graph_t *g, node_t *v)
Definition mincross.c:952
#define ND_x(n)
Definition mincross.c:215
static int64_t mincross(graph_t *g, int startpass)
Definition mincross.c:739
#define ORDINARY
Definition mincross.c:1781
static void init_mccomp(graph_t *g, size_t c)
Definition mincross.c:461
static void mincross_step(graph_t *g, int pass)
Definition mincross.c:1519
static int topsort(Agraph_t *g, Agraph_t *sg, Agnode_t **arr)
Definition mincross.c:246
static bool medians(graph_t *g, int r0, int r1)
Definition mincross.c:1678
static void reorder(graph_t *g, int r, bool reverse, bool hasfixed)
Definition mincross.c:1467
#define VAL(node, port)
Definition mincross.c:1676
static int edgeidcmpf(const void *, const void *)
Definition mincross.c:1758
static void flat_breakcycles(graph_t *g)
Definition mincross.c:1160
static void cleanup2(graph_t *g, int64_t nc)
Definition mincross.c:884
#define MARK(v)
Definition mincross.c:84
static bool is_a_normal_node_of(graph_t *g, node_t *v)
Definition mincross.c:936
static void save_best(graph_t *g)
Definition mincross.c:820
#define C_VS
Definition mincross.c:1787
static void init_mincross(graph_t *g)
Definition mincross.c:1073
static int64_t rcross(graph_t *g, int r)
Definition mincross.c:1569
#define ND_np(n)
Definition mincross.c:218
static int64_t transpose_step(graph_t *g, int r, bool reverse)
Definition mincross.c:681
static void fixLabelOrder(graph_t *g, rank_t *rk)
for each pair of nodes (labels), we add an edge
Definition mincross.c:288
void virtual_weight(edge_t *e)
Definition mincross.c:1806
static void merge2(graph_t *g)
Definition mincross.c:857
static int64_t mincross_clust(graph_t *g)
Definition mincross.c:580
static node_t * furthestnode(graph_t *g, node_t *v, int dir)
Definition mincross.c:956
static int out_cross(node_t *v, node_t *w)
Definition mincross.c:649
static int ordercmpf(const void *, const void *)
Definition mincross.c:1625
void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass)
Definition mincross.c:1343
static void do_ordering(graph_t *g, bool outflag)
Definition mincross.c:520
static void matrix_set(adjmatrix_t *me, size_t row, size_t col)
Definition mincross.c:67
void checkLabelOrder(graph_t *g)
Definition mincross.c:342
static int GlobalMinRank
Definition mincross.c:124
static const double Convergence
Definition mincross.c:121
int build_ranks(graph_t *g, int pass)
Definition mincross.c:1267
static adjmatrix_t * new_matrix(size_t i, size_t j)
Definition mincross.c:446
#define SINGLETON
Definition mincross.c:1782
static Agraph_t * realFillRanks(Agraph_t *g, int rnks[], int rnks_sz, Agraph_t *sg)
Definition mincross.c:1026
static Agnode_t * findSource(Agraph_t *g, Agraph_t *sg)
Definition mincross.c:236
static int * TI_list
Definition mincross.c:126
void rec_save_vlists(graph_t *g)
Definition mincross.c:978
#define C_EE
Definition mincross.c:1786
static void do_ordering_node(graph_t *g, node_t *n, bool outflag)
Definition mincross.c:480
static int64_t in_cross(node_t *v, node_t *w)
Definition mincross.c:630
static graph_t * Root
Definition mincross.c:123
#define C_VV
Definition mincross.c:1789
static void flat_search(graph_t *g, node_t *v)
Definition mincross.c:1124
static void ordered_edges(graph_t *g)
Definition mincross.c:553
static void transpose(graph_t *g, bool reverse)
Definition mincross.c:722
#define NTYPES
Definition mincross.c:1784
void rec_reset_vlists(graph_t *g)
Definition mincross.c:988
static void merge_components(graph_t *g)
Definition mincross.c:833
int dot_mincross(graph_t *g)
Definition mincross.c:381
static int64_t ncross(void)
Definition mincross.c:1608
static void mincross_options(graph_t *g)
Definition mincross.c:1864
static int endpoint_class(node_t *n)
Definition mincross.c:1797
static int getComp(graph_t *g, node_t *n, graph_t *comp, int *indices)
Definition mincross.c:265
static int GlobalMaxRank
Definition mincross.c:124
static bool left2right(graph_t *g, node_t *v, node_t *w)
Definition mincross.c:606
static int local_cross(elist l, int dir)
Definition mincross.c:1547
static void flat_reorder(graph_t *g)
Definition mincross.c:1396
#define C_SS
Definition mincross.c:1788
static void flat_rev(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1097
static void emptyComp(graph_t *sg)
Definition mincross.c:222
static bool is_a_vnode_of_an_edge_of(graph_t *g, node_t *v)
Definition mincross.c:940
static void fillRanks(Agraph_t *g)
Definition mincross.c:1065
static void do_ordering_for_nodes(graph_t *g)
Definition mincross.c:529
static void postorder(graph_t *g, node_t *v, nodes_t *list, int r)
Definition mincross.c:1380
static int MinQuit
Definition mincross.c:120
static edge_t ** TE_list
Definition mincross.c:125
void allocate_ranks(graph_t *g)
Definition mincross.c:1191
#define ND_lo(n)
Definition mincross.c:216
static int table[NTYPES][NTYPES]
Definition mincross.c:1791
static void restore_best(graph_t *g)
Definition mincross.c:802
static bool matrix_get(adjmatrix_t *me, size_t row, size_t col)
Definition mincross.c:48
static bool constraining_flat_edge(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1365
#define ND_idx(n)
Definition mincross.c:219
static int nodeposcmpf(const void *, const void *)
Definition mincross.c:1736
#define saveorder(v)
Definition mincross.c:85
void save_vlist(graph_t *g)
Definition mincross.c:968
int install_in_rank(graph_t *g, node_t *n)
Definition mincross.c:1219
#define VIRTUALNODE
Definition mincross.c:1783
#define M
Definition randomkit.c:90
static bool streq(const char *a, const char *b)
are a and b equal?
Definition streq.h:11
Agobj_t base
Definition cgraph.h:269
Agrec_t * data
stores programmer-defined data, access with AGDATA
Definition cgraph.h:212
graph or subgraph
Definition cgraph.h:424
Agraph_t * parent
Definition cgraph.h:433
implementation of Agrec_t
Definition cgraph.h:172
size_t nrows
Definition mincross.c:36
uint8_t * data
bit-packed backing memory
Definition mincross.c:38
size_t allocated
how many bytes have been allocated backing data?
Definition mincross.c:39
size_t ncols
Definition mincross.c:37
Definition types.h:251
edge_t ** list
Definition types.h:252
int hi
Definition mincross.c:211
Agrec_t h
Definition mincross.c:210
Agnode_t * np
Definition mincross.c:212
node_t ** v
Definition types.h:202
int n
Definition types.h:201
double elapsed_sec(void)
Definition timing.c:48
void start_timer(void)
Definition timing.c:43
#define elist_append(item, L)
Definition types.h:261
#define alloc_elist(n, L)
Definition types.h:267
Definition grammar.c:89
#define MAX(a, b)
Definition write.c:32