Graphviz 13.0.0~dev.20250210.0415
Loading...
Searching...
No Matches
mincross.c
Go to the documentation of this file.
1/*************************************************************************
2 * Copyright (c) 2011 AT&T Intellectual Property
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * https://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors: Details at https://graphviz.org
9 *************************************************************************/
10
11
12/*
13 * dot_mincross(g) takes a ranked graphs, and finds an ordering
14 * that avoids edge crossings. clusters are expanded.
15 * N.B. the rank structure is global (not allocated per cluster)
16 * because mincross may compare nodes in different clusters.
17 */
18
19#include <assert.h>
20#include <cgraph/cgraph.h>
21#include <dotgen/dot.h>
22#include <inttypes.h>
23#include <limits.h>
24#include <stdbool.h>
25#include <stdint.h>
26#include <stdlib.h>
27#include <string.h>
28#include <util/agxbuf.h>
29#include <util/alloc.h>
30#include <util/exit.h>
31#include <util/gv_math.h>
32#include <util/list.h>
33#include <util/streq.h>
34
36 size_t nrows;
37 size_t ncols;
38 char *data;
39};
40
41/* #define DEBUG */
42#define MARK(v) (ND_mark(v))
43#define saveorder(v) (ND_coord(v)).x
44#define flatindex(v) ((size_t)ND_low(v))
45
46 /* forward declarations */
47static bool medians(graph_t * g, int r0, int r1);
48static int nodeposcmpf(const void *, const void *);
49static int edgeidcmpf(const void *, const void *);
50static void flat_breakcycles(graph_t * g);
51static void flat_reorder(graph_t * g);
52static void flat_search(graph_t * g, node_t * v);
53static void init_mincross(graph_t * g);
54static void merge2(graph_t * g);
55static void init_mccomp(graph_t *g, size_t c);
56static void cleanup2(graph_t *g, int64_t nc);
57static int64_t mincross_clust(graph_t *g, ints_t *scratch);
58static int64_t mincross(graph_t *g, int startpass, ints_t *scratch);
59static void mincross_step(graph_t * g, int pass);
60static void mincross_options(graph_t * g);
61static void save_best(graph_t * g);
62static void restore_best(graph_t * g);
63static adjmatrix_t *new_matrix(size_t i, size_t j);
64static void free_matrix(adjmatrix_t * p);
65static int ordercmpf(const void *, const void *);
66static int64_t ncross(ints_t *scratch);
67#ifdef DEBUG
68#if DEBUG > 1
69static int gd_minrank(Agraph_t *g) {return GD_minrank(g);}
70static int gd_maxrank(Agraph_t *g) {return GD_maxrank(g);}
71static rank_t *gd_rank(Agraph_t *g, int r) {return &GD_rank(g)[r];}
72static int nd_order(Agnode_t *v) { return ND_order(v); }
73#endif
74void check_rs(graph_t * g, int null_ok);
75void check_order(void);
76void check_vlists(graph_t * g);
77void node_in_root_vlist(node_t * n);
78#endif
79
80
81 /* mincross parameters */
82static int MinQuit;
83static const double Convergence = .995;
84
85static graph_t *Root;
87static edge_t **TE_list;
88static int *TI_list;
89static bool ReMincross;
90
91#if defined(DEBUG) && DEBUG > 1
92static void indent(graph_t* g)
93{
94 if (g->parent) {
95 fprintf (stderr, " ");
96 indent(g->parent);
97 }
98}
99
100static char* nname(node_t* v)
101{
102 static char buf[1000];
103 if (ND_node_type(v)) {
104 if (ND_ranktype(v) == CLUSTER)
105 snprintf(buf, sizeof(buf), "v%s_%p", agnameof(ND_clust(v)), v);
106 else
107 snprintf(buf, sizeof(buf), "v_%p", v);
108 } else
109 snprintf(buf, sizeof(buf), "%s", agnameof(v));
110 return buf;
111}
112static void dumpg (graph_t* g)
113{
114 int j, i, r;
115 node_t* v;
116 edge_t* e;
117
118 fprintf (stderr, "digraph A {\n");
119 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
120 fprintf (stderr, " subgraph {rank=same ");
121 for (i = 0; i < GD_rank(g)[r].n; i++) {
122 v = GD_rank(g)[r].v[i];
123 if (i > 0)
124 fprintf (stderr, " -> %s", nname(v));
125 else
126 fprintf (stderr, "%s", nname(v));
127 }
128 if (i > 1) fprintf (stderr, " [style=invis]}\n");
129 else fprintf (stderr, " }\n");
130 }
131 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
132 for (i = 0; i < GD_rank(g)[r].n; i++) {
133 v = GD_rank(g)[r].v[i];
134 for (j = 0; (e = ND_out(v).list[j]); j++) {
135 fprintf (stderr, "%s -> ", nname(v));
136 fprintf (stderr, "%s\n", nname(aghead(e)));
137 }
138 }
139 }
140 fprintf (stderr, "}\n");
141}
142static void dumpr (graph_t* g, int edges)
143{
144 int j, i, r;
145 node_t* v;
146 edge_t* e;
147
148 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
149 fprintf (stderr, "[%d] ", r);
150 for (i = 0; i < GD_rank(g)[r].n; i++) {
151 v = GD_rank(g)[r].v[i];
152 fprintf (stderr, "%s(%.02f,%d) ", nname(v), saveorder(v),ND_order(v));
153 }
154 fprintf (stderr, "\n");
155 }
156 if (edges == 0) return;
157 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
158 for (i = 0; i < GD_rank(g)[r].n; i++) {
159 v = GD_rank(g)[r].v[i];
160 for (j = 0; (e = ND_out(v).list[j]); j++) {
161 fprintf (stderr, "%s -> ", nname(v));
162 fprintf (stderr, "%s\n", nname(aghead(e)));
163 }
164 }
165 }
166}
167#endif
168
169typedef struct {
171 int x, lo, hi;
173} info_t;
174
175#define ND_x(n) (((info_t*)AGDATA(n))->x)
176#define ND_lo(n) (((info_t*)AGDATA(n))->lo)
177#define ND_hi(n) (((info_t*)AGDATA(n))->hi)
178#define ND_np(n) (((info_t*)AGDATA(n))->np)
179#define ND_idx(n) (ND_order(ND_np(n)))
180
181static void
183{
184 Agnode_t* n;
185 Agnode_t* nxt;
186
187 for (n = agfstnode(sg); n; n = nxt) {
188 nxt = agnxtnode (sg, n);
189 agdelnode(sg,n);
190 }
191}
192
193#define isBackedge(e) (ND_idx(aghead(e)) > ND_idx(agtail(e)))
194
195static Agnode_t*
197{
198 Agnode_t* n;
199
200 for (n = agfstnode(sg); n; n = agnxtnode(sg, n))
201 if (agdegree(g,n,1,0) == 0) return n;
202 return NULL;
203}
204
205static int
207{
208 Agnode_t* n;
209 Agedge_t* e;
210 Agedge_t* nxte;
211 int cnt = 0;
212
213 while ((n = findSource(g, sg))) {
214 arr[cnt++] = ND_np(n);
215 agdelnode(sg, n);
216 for (e = agfstout(g, n); e; e = nxte) {
217 nxte = agnxtout(g, e);
218 agdeledge(g, e);
219 }
220 }
221 return cnt;
222}
223
224static int
225getComp (graph_t* g, node_t* n, graph_t* comp, int* indices)
226{
227 int backedge = 0;
228 Agedge_t* e;
229
230 ND_x(n) = 1;
231 indices[agnnodes(comp)] = ND_idx(n);
232 agsubnode(comp, n, 1);
233 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
234 if (isBackedge(e)) backedge++;
235 if (!ND_x(aghead(e)))
236 backedge += getComp(g, aghead(e), comp, indices);
237 }
238 for (e = agfstin(g,n); e; e = agnxtin(g,e)) {
239 if (isBackedge(e)) backedge++;
240 if (!ND_x(agtail(e)))
241 backedge += getComp(g, agtail(e), comp, indices);
242 }
243 return backedge;
244}
245
246/* fixLabelOrder:
247 * For each pair of nodes (labels), we add an edge
248 */
249static void
251{
252 int cnt;
253 bool haveBackedge = false;
254 Agraph_t* sg;
255 Agnode_t* n;
256 Agnode_t* nxtp;
257 Agnode_t* v;
258
259 for (n = agfstnode(g); n; n = nxtp) {
260 v = nxtp = agnxtnode(g, n);
261 for (; v; v = agnxtnode(g, v)) {
262 if (ND_hi(v) <= ND_lo(n)) {
263 haveBackedge = true;
264 agedge(g, v, n, NULL, 1);
265 }
266 else if (ND_hi(n) <= ND_lo(v)) {
267 agedge(g, n, v, NULL, 1);
268 }
269 }
270 }
271 if (!haveBackedge) return;
272
273 sg = agsubg(g, "comp", 1);
274 Agnode_t **arr = gv_calloc(agnnodes(g), sizeof(Agnode_t*));
275 int *indices = gv_calloc(agnnodes(g), sizeof(int));
276
277 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
278 if (ND_x(n) || agdegree(g,n,1,1) == 0) continue;
279 if (getComp(g, n, sg, indices)) {
280 int i, sz = agnnodes(sg);
281 cnt = topsort (g, sg, arr);
282 assert (cnt == sz);
283 qsort(indices, cnt, sizeof(int), ordercmpf);
284 for (i = 0; i < sz; i++) {
285 ND_order(arr[i]) = indices[i];
286 rk->v[indices[i]] = arr[i];
287 }
288 }
289 emptyComp(sg);
290 }
291 free(indices);
292 free (arr);
293}
294
295/* checkLabelOrder:
296 * Check that the ordering of labels for flat edges is consistent.
297 * This is necessary because dot_position will attempt to force the label
298 * to be between the edge's vertices. This can lead to an infeasible problem.
299 *
300 * We check each rank for any flat edge labels (as dummy nodes) and create a
301 * graph with a node for each label. If the graph contains more than 1 node, we
302 * call fixLabelOrder to see if there really is a problem and, if so, fix it.
303 */
304void
306{
307 int j, r, lo, hi;
308 graph_t* lg = NULL;
309 agxbuf buf = {0};
310 rank_t* rk;
311 Agnode_t* u;
312 Agnode_t* n;
313 Agedge_t* e;
314
315 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
316 rk = GD_rank(g)+r;
317 for (j = 0; j < rk->n; j++) {
318 u = rk->v[j];
319 if ((e = ND_alg(u))) {
320 if (!lg) lg = agopen ("lg", Agstrictdirected, 0);
321 agxbprint(&buf, "%d", j);
322 n = agnode(lg, agxbuse(&buf), 1);
323 agbindrec(n, "info", sizeof(info_t), true);
324 lo = ND_order(aghead(ND_out(u).list[0]));
325 hi = ND_order(aghead(ND_out(u).list[1]));
326 if (lo > hi) {
327 SWAP(&lo, &hi);
328 }
329 ND_lo(n) = lo;
330 ND_hi(n) = hi;
331 ND_np(n) = u;
332 }
333 }
334 if (lg) {
335 if (agnnodes(lg) > 1) fixLabelOrder (lg, rk);
336 agclose(lg);
337 lg = NULL;
338 }
339 }
340 agxbfree(&buf);
341}
342
343/* dot_mincross:
344 * Minimize edge crossings
345 * Note that nodes are not placed into GD_rank(g) until mincross()
346 * is called.
347 */
349 int64_t nc;
350 char *s;
351
352 /* check whether malformed input has led to empty cluster that the crossing
353 * functions will not anticipate
354 */
355 {
356 size_t i;
357 for (i = 1; i <= (size_t)GD_n_cluster(g); ) {
358 if (agfstnode(GD_clust(g)[i]) == NULL) {
359 agwarningf("removing empty cluster\n");
360 memmove(&GD_clust(g)[i], &GD_clust(g)[i + 1],
361 ((size_t)GD_n_cluster(g) - i) * sizeof(GD_clust(g)[0]));
362 --GD_n_cluster(g);
363 } else {
364 ++i;
365 }
366 }
367 }
368
369 init_mincross(g);
370
371 ints_t scratch = {0};
372
373 size_t comp;
374 for (nc = 0, comp = 0; comp < GD_comp(g).size; comp++) {
375 init_mccomp(g, comp);
376 nc += mincross(g, 0, &scratch);
377 }
378
379 merge2(g);
380
381 /* run mincross on contents of each cluster */
382 for (int c = 1; c <= GD_n_cluster(g); c++) {
383 nc += mincross_clust(GD_clust(g)[c], &scratch);
384#ifdef DEBUG
385 check_vlists(GD_clust(g)[c]);
386 check_order();
387#endif
388 }
389
390 if (GD_n_cluster(g) > 0 && (!(s = agget(g, "remincross")) || mapbool(s))) {
392 ReMincross = true;
393 nc = mincross(g, 2, &scratch);
394#ifdef DEBUG
395 for (int c = 1; c <= GD_n_cluster(g); c++)
396 check_vlists(GD_clust(g)[c]);
397#endif
398 }
399 ints_free(&scratch);
400 cleanup2(g, nc);
401}
402
403static adjmatrix_t *new_matrix(size_t i, size_t j) {
404 adjmatrix_t *rv = gv_alloc(sizeof(adjmatrix_t));
405 rv->nrows = i;
406 rv->ncols = j;
407 rv->data = gv_calloc(i * j, sizeof(char));
408 return rv;
409}
410
411static void free_matrix(adjmatrix_t * p)
412{
413 if (p) {
414 free(p->data);
415 free(p);
416 }
417}
418
419#define ELT(M,i,j) (M->data[((i)*M->ncols)+(j)])
420
421static void init_mccomp(graph_t *g, size_t c) {
422 int r;
423
424 GD_nlist(g) = GD_comp(g).list[c];
425 if (c > 0) {
426 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
427 GD_rank(g)[r].v = GD_rank(g)[r].v + GD_rank(g)[r].n;
428 GD_rank(g)[r].n = 0;
429 }
430 }
431}
432
433static int betweenclust(edge_t * e)
434{
435 while (ED_to_orig(e))
436 e = ED_to_orig(e);
437 return (ND_clust(agtail(e)) != ND_clust(aghead(e)));
438}
439
440static void do_ordering_node(graph_t *g, node_t *n, bool outflag) {
441 int i, ne;
442 node_t *u, *v;
443 edge_t *e, *f, *fe;
444 edge_t **sortlist = TE_list;
445
446 if (ND_clust(n))
447 return;
448 if (outflag) {
449 for (i = ne = 0; (e = ND_out(n).list[i]); i++)
450 if (!betweenclust(e))
451 sortlist[ne++] = e;
452 } else {
453 for (i = ne = 0; (e = ND_in(n).list[i]); i++)
454 if (!betweenclust(e))
455 sortlist[ne++] = e;
456 }
457 if (ne <= 1)
458 return;
459 /* write null terminator at end of list.
460 requires +1 in TE_list alloccation */
461 sortlist[ne] = 0;
462 qsort(sortlist, ne, sizeof(sortlist[0]), edgeidcmpf);
463 for (ne = 1; (f = sortlist[ne]); ne++) {
464 e = sortlist[ne - 1];
465 if (outflag) {
466 u = aghead(e);
467 v = aghead(f);
468 } else {
469 u = agtail(e);
470 v = agtail(f);
471 }
472 if (find_flat_edge(u, v))
473 return;
474 fe = new_virtual_edge(u, v, NULL);
476 flat_edge(g, fe);
477 }
478}
479
480static void do_ordering(graph_t *g, bool outflag) {
481 /* Order all nodes in graph */
482 node_t *n;
483
484 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
485 do_ordering_node (g, n, outflag);
486 }
487}
488
490{
491 /* Order nodes which have the "ordered" attribute */
492 node_t *n;
493 const char *ordering;
494
495 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
496 if ((ordering = late_string(n, N_ordering, NULL))) {
497 if (streq(ordering, "out"))
498 do_ordering_node(g, n, true);
499 else if (streq(ordering, "in"))
500 do_ordering_node(g, n, false);
501 else if (ordering[0])
502 agerrorf("ordering '%s' not recognized for node '%s'.\n", ordering, agnameof(n));
503 }
504 }
505}
506
507/* ordered_edges:
508 * handle case where graph specifies edge ordering
509 * If the graph does not have an ordering attribute, we then
510 * check for nodes having the attribute.
511 * Note that, in this implementation, the value of G_ordering
512 * dominates the value of N_ordering.
513 */
514static void ordered_edges(graph_t * g)
515{
516 char *ordering;
517
518 if (!G_ordering && !N_ordering)
519 return;
520 if ((ordering = late_string(g, G_ordering, NULL))) {
521 if (streq(ordering, "out"))
522 do_ordering(g, true);
523 else if (streq(ordering, "in"))
524 do_ordering(g, false);
525 else if (ordering[0])
526 agerrorf("ordering '%s' not recognized.\n", ordering);
527 }
528 else
529 {
530 graph_t *subg;
531
532 for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) {
533 /* clusters are processed by separate calls to ordered_edges */
534 if (!is_cluster(subg))
535 ordered_edges(subg);
536 }
538 }
539}
540
541static int64_t mincross_clust(graph_t *g, ints_t *scratch) {
542 int c;
543
545 ordered_edges(g);
547 flat_reorder(g);
548 int64_t nc = mincross(g, 2, scratch);
549
550 for (c = 1; c <= GD_n_cluster(g); c++)
551 nc += mincross_clust(GD_clust(g)[c], scratch);
552
553 save_vlist(g);
554 return nc;
555}
556
557static bool left2right(graph_t *g, node_t *v, node_t *w) {
558 adjmatrix_t *M;
559
560 /* CLUSTER indicates orig nodes of clusters, and vnodes of skeletons */
561 if (!ReMincross) {
562 if (ND_clust(v) != ND_clust(w) && ND_clust(v) && ND_clust(w)) {
563 /* the following allows cluster skeletons to be swapped */
564 if (ND_ranktype(v) == CLUSTER && ND_node_type(v) == VIRTUAL)
565 return false;
566 if (ND_ranktype(w) == CLUSTER && ND_node_type(w) == VIRTUAL)
567 return false;
568 return true;
569 }
570 } else {
571 if (ND_clust(v) != ND_clust(w))
572 return true;
573 }
574 M = GD_rank(g)[ND_rank(v)].flat;
575 if (M == NULL)
576 return false;
577 if (GD_flip(g)) {
578 SWAP(&v, &w);
579 }
580 return ELT(M, flatindex(v), flatindex(w)) != 0;
581}
582
583static int64_t in_cross(node_t *v, node_t *w) {
584 edge_t **e1, **e2;
585 int inv, t;
586 int64_t cross = 0;
587
588 for (e2 = ND_in(w).list; *e2; e2++) {
589 int cnt = ED_xpenalty(*e2);
590
591 inv = ND_order(agtail(*e2));
592
593 for (e1 = ND_in(v).list; *e1; e1++) {
594 t = ND_order(agtail(*e1)) - inv;
595 if (t > 0 || (t == 0 && ED_tail_port(*e1).p.x > ED_tail_port(*e2).p.x))
596 cross += ED_xpenalty(*e1) * cnt;
597 }
598 }
599 return cross;
600}
601
602static int out_cross(node_t * v, node_t * w)
603{
604 edge_t **e1, **e2;
605 int inv, cross = 0, t;
606
607 for (e2 = ND_out(w).list; *e2; e2++) {
608 int cnt = ED_xpenalty(*e2);
609 inv = ND_order(aghead(*e2));
610
611 for (e1 = ND_out(v).list; *e1; e1++) {
612 t = ND_order(aghead(*e1)) - inv;
613 if (t > 0 || (t == 0 && (ED_head_port(*e1)).p.x > (ED_head_port(*e2)).p.x))
614 cross += ED_xpenalty(*e1) * cnt;
615 }
616 }
617 return cross;
618
619}
620
621static void exchange(node_t * v, node_t * w)
622{
623 int vi, wi, r;
624
625 r = ND_rank(v);
626 vi = ND_order(v);
627 wi = ND_order(w);
628 ND_order(v) = wi;
629 GD_rank(Root)[r].v[wi] = v;
630 ND_order(w) = vi;
631 GD_rank(Root)[r].v[vi] = w;
632}
633
634static int64_t transpose_step(graph_t *g, int r, bool reverse) {
635 int i;
636 node_t *v, *w;
637
638 int64_t rv = 0;
639 GD_rank(g)[r].candidate = false;
640 for (i = 0; i < GD_rank(g)[r].n - 1; i++) {
641 v = GD_rank(g)[r].v[i];
642 w = GD_rank(g)[r].v[i + 1];
643 assert(ND_order(v) < ND_order(w));
644 if (left2right(g, v, w))
645 continue;
646 int64_t c0 = 0;
647 int64_t c1 = 0;
648 if (r > 0) {
649 c0 += in_cross(v, w);
650 c1 += in_cross(w, v);
651 }
652 if (GD_rank(g)[r + 1].n > 0) {
653 c0 += out_cross(v, w);
654 c1 += out_cross(w, v);
655 }
656 if (c1 < c0 || (c0 > 0 && reverse && c1 == c0)) {
657 exchange(v, w);
658 rv += c0 - c1;
659 GD_rank(Root)[r].valid = false;
660 GD_rank(g)[r].candidate = true;
661
662 if (r > GD_minrank(g)) {
663 GD_rank(Root)[r - 1].valid = false;
664 GD_rank(g)[r - 1].candidate = true;
665 }
666 if (r < GD_maxrank(g)) {
667 GD_rank(Root)[r + 1].valid = false;
668 GD_rank(g)[r + 1].candidate = true;
669 }
670 }
671 }
672 return rv;
673}
674
675static void transpose(graph_t * g, bool reverse)
676{
677 int r;
678
679 for (r = GD_minrank(g); r <= GD_maxrank(g); r++)
680 GD_rank(g)[r].candidate = true;
681 int64_t delta;
682 do {
683 delta = 0;
684 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
685 if (GD_rank(g)[r].candidate) {
686 delta += transpose_step(g, r, reverse);
687 }
688 }
689 } while (delta >= 1);
690}
691
692static int64_t mincross(graph_t *g, int startpass, ints_t *scratch) {
693 const int endpass = 2;
694 int maxthispass = 0, iter, trying, pass;
695 int64_t cur_cross, best_cross;
696
697 if (startpass > 1) {
698 cur_cross = best_cross = ncross(scratch);
699 save_best(g);
700 } else
701 cur_cross = best_cross = INT64_MAX;
702 for (pass = startpass; pass <= endpass; pass++) {
703 if (pass <= 1) {
704 maxthispass = MIN(4, MaxIter);
705 if (g == dot_root(g))
706 build_ranks(g, pass, scratch);
707 if (pass == 0)
709 flat_reorder(g);
710
711 if ((cur_cross = ncross(scratch)) <= best_cross) {
712 save_best(g);
713 best_cross = cur_cross;
714 }
715 } else {
716 maxthispass = MaxIter;
717 if (cur_cross > best_cross)
718 restore_best(g);
719 cur_cross = best_cross;
720 }
721 trying = 0;
722 for (iter = 0; iter < maxthispass; iter++) {
723 if (Verbose)
724 fprintf(stderr,
725 "mincross: pass %d iter %d trying %d cur_cross %" PRId64 " best_cross %"
726 PRId64 "\n",
727 pass, iter, trying, cur_cross, best_cross);
728 if (trying++ >= MinQuit)
729 break;
730 if (cur_cross == 0)
731 break;
732 mincross_step(g, iter);
733 if ((cur_cross = ncross(scratch)) <= best_cross) {
734 save_best(g);
735 if (cur_cross < Convergence * (double)best_cross)
736 trying = 0;
737 best_cross = cur_cross;
738 }
739 }
740 if (cur_cross == 0)
741 break;
742 }
743 if (cur_cross > best_cross)
744 restore_best(g);
745 if (best_cross > 0) {
746 transpose(g, false);
747 best_cross = ncross(scratch);
748 }
749
750 return best_cross;
751}
752
753static void restore_best(graph_t * g)
754{
755 node_t *n;
756 int i, r;
757
758 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
759 for (i = 0; i < GD_rank(g)[r].n; i++) {
760 n = GD_rank(g)[r].v[i];
761 ND_order(n) = saveorder(n);
762 }
763 }
764 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
765 GD_rank(Root)[r].valid = false;
766 qsort(GD_rank(g)[r].v, GD_rank(g)[r].n, sizeof(GD_rank(g)[0].v[0]),
768 }
769}
770
771static void save_best(graph_t * g)
772{
773 node_t *n;
774 int i, r;
775 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
776 for (i = 0; i < GD_rank(g)[r].n; i++) {
777 n = GD_rank(g)[r].v[i];
778 saveorder(n) = ND_order(n);
779 }
780 }
781}
782
783/* merges the connected components of g */
784static void merge_components(graph_t * g)
785{
786 node_t *u, *v;
787
788 if (GD_comp(g).size <= 1)
789 return;
790 u = NULL;
791 for (size_t c = 0; c < GD_comp(g).size; c++) {
792 v = GD_comp(g).list[c];
793 if (u)
794 ND_next(u) = v;
795 ND_prev(v) = u;
796 while (ND_next(v)) {
797 v = ND_next(v);
798 }
799 u = v;
800 }
801 GD_comp(g).size = 1;
802 GD_nlist(g) = GD_comp(g).list[0];
805}
806
807/* merge connected components, create globally consistent rank lists */
808static void merge2(graph_t * g)
809{
810 int i, r;
811 node_t *v;
812
813 /* merge the components and rank limits */
815
816 /* install complete ranks */
817 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
818 GD_rank(g)[r].n = GD_rank(g)[r].an;
819 GD_rank(g)[r].v = GD_rank(g)[r].av;
820 for (i = 0; i < GD_rank(g)[r].n; i++) {
821 v = GD_rank(g)[r].v[i];
822 if (v == NULL) {
823 if (Verbose)
824 fprintf(stderr,
825 "merge2: graph %s, rank %d has only %d < %d nodes\n",
826 agnameof(g), r, i, GD_rank(g)[r].n);
827 GD_rank(g)[r].n = i;
828 break;
829 }
830 ND_order(v) = i;
831 }
832 }
833}
834
835static void cleanup2(graph_t *g, int64_t nc) {
836 int i, j, r, c;
837 node_t *v;
838 edge_t *e;
839
840 if (TI_list) {
841 free(TI_list);
842 TI_list = NULL;
843 }
844 if (TE_list) {
845 free(TE_list);
846 TE_list = NULL;
847 }
848 /* fix vlists of clusters */
849 for (c = 1; c <= GD_n_cluster(g); c++)
851
852 /* remove node temporary edges for ordering nodes */
853 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
854 for (i = 0; i < GD_rank(g)[r].n; i++) {
855 v = GD_rank(g)[r].v[i];
856 ND_order(v) = i;
857 if (ND_flat_out(v).list) {
858 for (j = 0; (e = ND_flat_out(v).list[j]); j++)
859 if (ED_edge_type(e) == FLATORDER) {
861 free(e->base.data);
862 free(e);
863 j--;
864 }
865 }
866 }
867 free_matrix(GD_rank(g)[r].flat);
868 }
869 if (Verbose)
870 fprintf(stderr, "mincross %s: %" PRId64 " crossings, %.2f secs.\n",
871 agnameof(g), nc, elapsed_sec());
872}
873
874static node_t *neighbor(node_t * v, int dir)
875{
876 node_t *rv;
877
878 rv = NULL;
879assert(v);
880 if (dir < 0) {
881 if (ND_order(v) > 0)
882 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) - 1];
883 } else
884 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) + 1];
885assert((rv == 0) || (ND_order(rv)-ND_order(v))*dir > 0);
886 return rv;
887}
888
889static bool is_a_normal_node_of(graph_t *g, node_t *v) {
890 return ND_node_type(v) == NORMAL && agcontains(g, v);
891}
892
894 if (ND_node_type(v) == VIRTUAL
895 && ND_in(v).size == 1 && ND_out(v).size == 1) {
896 edge_t *e = ND_out(v).list[0];
897 while (ED_edge_type(e) != NORMAL)
898 e = ED_to_orig(e);
899 if (agcontains(g, e))
900 return true;
901 }
902 return false;
903}
904
905static bool inside_cluster(graph_t *g, node_t *v) {
906 return is_a_normal_node_of(g, v) || is_a_vnode_of_an_edge_of(g, v);
907}
908
909static node_t *furthestnode(graph_t * g, node_t * v, int dir)
910{
911 node_t *u, *rv;
912
913 rv = u = v;
914 while ((u = neighbor(u, dir))) {
915 if (is_a_normal_node_of(g, u))
916 rv = u;
917 else if (is_a_vnode_of_an_edge_of(g, u))
918 rv = u;
919 }
920 return rv;
921}
922
924{
925 int r;
926
927 if (GD_rankleader(g))
928 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
929 GD_rankleader(g)[r] = GD_rank(g)[r].v[0];
930 }
931}
932
934{
935 int c;
936
937 save_vlist(g);
938 for (c = 1; c <= GD_n_cluster(g); c++)
940}
941
942
944{
945 int r, c;
946 node_t *u, *v, *w;
947
948 /* fix vlists of sub-clusters */
949 for (c = 1; c <= GD_n_cluster(g); c++)
951
952 if (GD_rankleader(g))
953 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
954 v = GD_rankleader(g)[r];
955#ifdef DEBUG
956 node_in_root_vlist(v);
957#endif
958 u = furthestnode(g, v, -1);
959 w = furthestnode(g, v, 1);
960 GD_rankleader(g)[r] = u;
961#ifdef DEBUG
962 assert(GD_rank(dot_root(g))[r].v[ND_order(u)] == u);
963#endif
964 GD_rank(g)[r].v = GD_rank(dot_root(g))[r].v + ND_order(u);
965 GD_rank(g)[r].n = ND_order(w) - ND_order(u) + 1;
966 }
967}
968
969/* realFillRanks:
970 * The structures in crossing minimization and positioning require
971 * that clusters have some node on each rank. This function recursively
972 * guarantees this property. It takes into account nodes and edges in
973 * a cluster, the latter causing dummy nodes for intervening ranks.
974 * For any rank without node, we create a real node of small size. This
975 * is stored in the subgraph sg, for easy removal later.
976 *
977 * I believe it is not necessary to do this for the root graph, as these
978 * are laid out one component at a time and these will necessarily have a
979 * node on each rank from source to sink levels.
980 */
981static Agraph_t*
982realFillRanks (Agraph_t* g, int rnks[], int rnks_sz, Agraph_t* sg)
983{
984 int i, c;
985 Agedge_t* e;
986 Agnode_t* n;
987
988 for (c = 1; c <= GD_n_cluster(g); c++)
989 sg = realFillRanks (GD_clust(g)[c], rnks, rnks_sz, sg);
990
991 if (dot_root(g) == g)
992 return sg;
993 memset (rnks, 0, sizeof(int)*rnks_sz);
994 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
995 rnks[ND_rank(n)] = 1;
996 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
997 for (i = ND_rank(n)+1; i <= ND_rank(aghead(e)); i++)
998 rnks[i] = 1;
999 }
1000 }
1001 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1002 if (rnks[i] == 0) {
1003 if (!sg) {
1004 sg = agsubg (dot_root(g), "_new_rank", 1);
1005 }
1006 n = agnode (sg, NULL, 1);
1007 agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true);
1008 ND_rank(n) = i;
1009 ND_lw(n) = ND_rw(n) = 0.5;
1010 ND_ht(n) = 1;
1011 ND_UF_size(n) = 1;
1012 alloc_elist(4, ND_in(n));
1013 alloc_elist(4, ND_out(n));
1014 agsubnode (g, n, 1);
1015 }
1016 }
1017 return sg;
1018}
1019
1020static void
1022{
1023 int rnks_sz = GD_maxrank(g) + 2;
1024 int *rnks = gv_calloc(rnks_sz, sizeof(int));
1025 realFillRanks (g, rnks, rnks_sz, NULL);
1026 free (rnks);
1027}
1028
1029static void init_mincross(graph_t * g)
1030{
1031 int size;
1032
1033 if (Verbose)
1034 start_timer();
1035
1036 ReMincross = false;
1037 Root = g;
1038 /* alloc +1 for the null terminator usage in do_ordering() */
1039 size = agnedges(dot_root(g)) + 1;
1040 TE_list = gv_calloc(size, sizeof(edge_t*));
1041 TI_list = gv_calloc(size, sizeof(int));
1043 if (GD_flags(g) & NEW_RANK)
1044 fillRanks (g);
1045 class2(g);
1046 decompose(g, 1);
1047 allocate_ranks(g);
1048 ordered_edges(g);
1051}
1052
1053static void flat_rev(Agraph_t * g, Agedge_t * e)
1054{
1055 int j;
1056 Agedge_t *rev;
1057
1058 if (!ND_flat_out(aghead(e)).list)
1059 rev = NULL;
1060 else
1061 for (j = 0; (rev = ND_flat_out(aghead(e)).list[j]); j++)
1062 if (aghead(rev) == agtail(e))
1063 break;
1064 if (rev) {
1065 merge_oneway(e, rev);
1066 if (ED_edge_type(rev) == FLATORDER && ED_to_orig(rev) == 0)
1067 ED_to_orig(rev) = e;
1069 } else {
1070 rev = new_virtual_edge(aghead(e), agtail(e), e);
1071 if (ED_edge_type(e) == FLATORDER)
1072 ED_edge_type(rev) = FLATORDER;
1073 else
1074 ED_edge_type(rev) = REVERSED;
1075 ED_label(rev) = ED_label(e);
1076 flat_edge(g, rev);
1077 }
1078}
1079
1080static void flat_search(graph_t * g, node_t * v)
1081{
1082 int i;
1083 bool hascl;
1084 edge_t *e;
1085 adjmatrix_t *M = GD_rank(g)[ND_rank(v)].flat;
1086
1087 ND_mark(v) = true;
1088 ND_onstack(v) = true;
1089 hascl = GD_n_cluster(dot_root(g)) > 0;
1090 if (ND_flat_out(v).list)
1091 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1092 if (hascl && !(agcontains(g, agtail(e)) && agcontains(g, aghead(e))))
1093 continue;
1094 if (ED_weight(e) == 0)
1095 continue;
1096 if (ND_onstack(aghead(e))) {
1097 assert(flatindex(aghead(e)) < M->nrows);
1098 assert(flatindex(agtail(e)) < M->ncols);
1099 ELT(M, flatindex(aghead(e)), flatindex(agtail(e))) = 1;
1101 i--;
1102 if (ED_edge_type(e) == FLATORDER)
1103 continue;
1104 flat_rev(g, e);
1105 } else {
1106 assert(flatindex(aghead(e)) < M->nrows);
1107 assert(flatindex(agtail(e)) < M->ncols);
1108 ELT(M, flatindex(agtail(e)), flatindex(aghead(e))) = 1;
1109 if (!ND_mark(aghead(e)))
1110 flat_search(g, aghead(e));
1111 }
1112 }
1113 ND_onstack(v) = false;
1114}
1115
1117{
1118 int i, r, flat;
1119 node_t *v;
1120
1121 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1122 flat = 0;
1123 for (i = 0; i < GD_rank(g)[r].n; i++) {
1124 v = GD_rank(g)[r].v[i];
1125 ND_mark(v) = false;
1126 ND_onstack(v) = false;
1127 ND_low(v) = i;
1128 if (ND_flat_out(v).size > 0 && flat == 0) {
1129 GD_rank(g)[r].flat =
1130 new_matrix((size_t)GD_rank(g)[r].n, (size_t)GD_rank(g)[r].n);
1131 flat = 1;
1132 }
1133 }
1134 if (flat) {
1135 for (i = 0; i < GD_rank(g)[r].n; i++) {
1136 v = GD_rank(g)[r].v[i];
1137 if (!ND_mark(v))
1138 flat_search(g, v);
1139 }
1140 }
1141 }
1142}
1143
1144/* allocate_ranks:
1145 * Allocate rank structure, determining number of nodes per rank.
1146 * Note that no nodes are put into the structure yet.
1147 */
1149{
1150 int r, low, high;
1151 node_t *n;
1152 edge_t *e;
1153
1154 int *cn = gv_calloc(GD_maxrank(g) + 2, sizeof(int)); // must be 0 based, not GD_minrank
1155 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
1156 cn[ND_rank(n)]++;
1157 for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
1158 low = ND_rank(agtail(e));
1159 high = ND_rank(aghead(e));
1160 if (low > high) {
1161 SWAP(&low, &high);
1162 }
1163 for (r = low + 1; r < high; r++)
1164 cn[r]++;
1165 }
1166 }
1167 GD_rank(g) = gv_calloc(GD_maxrank(g) + 2, sizeof(rank_t));
1168 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1169 GD_rank(g)[r].an = GD_rank(g)[r].n = cn[r] + 1;
1170 GD_rank(g)[r].av = GD_rank(g)[r].v = gv_calloc(cn[r] + 1, sizeof(node_t*));
1171 }
1172 free(cn);
1173}
1174
1175/* install a node at the current right end of its rank */
1177{
1178 int i, r;
1179
1180 r = ND_rank(n);
1181 i = GD_rank(g)[r].n;
1182 if (GD_rank(g)[r].an <= 0) {
1183 agerrorf("install_in_rank, line %d: %s %s rank %d i = %d an = 0\n",
1184 __LINE__, agnameof(g), agnameof(n), r, i);
1185 return;
1186 }
1187
1188 GD_rank(g)[r].v[i] = n;
1189 ND_order(n) = i;
1190 GD_rank(g)[r].n++;
1191 assert(GD_rank(g)[r].n <= GD_rank(g)[r].an);
1192#ifdef DEBUG
1193 {
1194 node_t *v;
1195
1196 for (v = GD_nlist(g); v; v = ND_next(v))
1197 if (v == n)
1198 break;
1199 assert(v != NULL);
1200 }
1201#endif
1202 if (ND_order(n) > GD_rank(Root)[r].an) {
1203 agerrorf("install_in_rank, line %d: ND_order(%s) [%d] > GD_rank(Root)[%d].an [%d]\n",
1204 __LINE__, agnameof(n), ND_order(n), r, GD_rank(Root)[r].an);
1205 return;
1206 }
1207 if (r < GD_minrank(g) || r > GD_maxrank(g)) {
1208 agerrorf("install_in_rank, line %d: rank %d not in rank range [%d,%d]\n",
1209 __LINE__, r, GD_minrank(g), GD_maxrank(g));
1210 return;
1211 }
1212 if (GD_rank(g)[r].v + ND_order(n) >
1213 GD_rank(g)[r].av + GD_rank(Root)[r].an) {
1214 agerrorf("install_in_rank, line %d: GD_rank(g)[%d].v + ND_order(%s) [%d] > GD_rank(g)[%d].av + GD_rank(Root)[%d].an [%d]\n",
1215 __LINE__, r, agnameof(n),ND_order(n), r, r, GD_rank(Root)[r].an);
1216 return;
1217 }
1218}
1219
1220/* install nodes in ranks. the initial ordering ensure that series-parallel
1221 * graphs such as trees are drawn with no crossings. it tries searching
1222 * in- and out-edges and takes the better of the two initial orderings.
1223 */
1224void build_ranks(graph_t *g, int pass, ints_t *scratch) {
1225 int i, j;
1226 node_t *n, *ns;
1227 edge_t **otheredges;
1228 node_queue_t q = {0};
1229 for (n = GD_nlist(g); n; n = ND_next(n))
1230 MARK(n) = false;
1231
1232#ifdef DEBUG
1233 {
1234 edge_t *e;
1235 for (n = GD_nlist(g); n; n = ND_next(n)) {
1236 for (i = 0; (e = ND_out(n).list[i]); i++)
1237 assert(!MARK(aghead(e)));
1238 for (i = 0; (e = ND_in(n).list[i]); i++)
1239 assert(!MARK(agtail(e)));
1240 }
1241 }
1242#endif
1243
1244 for (i = GD_minrank(g); i <= GD_maxrank(g); i++)
1245 GD_rank(g)[i].n = 0;
1246
1247 const bool walkbackwards = g != agroot(g); // if this is a cluster, need to
1248 // walk GD_nlist backward to
1249 // preserve input node order
1250 if (walkbackwards) {
1251 for (ns = GD_nlist(g); ND_next(ns); ns = ND_next(ns)) {
1252 ;
1253 }
1254 } else {
1255 ns = GD_nlist(g);
1256 }
1257 for (n = ns; n; n = walkbackwards ? ND_prev(n) : ND_next(n)) {
1258 otheredges = pass == 0 ? ND_in(n).list : ND_out(n).list;
1259 if (otheredges[0] != NULL)
1260 continue;
1261 if (!MARK(n)) {
1262 MARK(n) = true;
1263 node_queue_push_back(&q, n);
1264 while (!node_queue_is_empty(&q)) {
1265 node_t *n0 = node_queue_pop_front(&q);
1266 if (ND_ranktype(n0) != CLUSTER) {
1267 install_in_rank(g, n0);
1268 enqueue_neighbors(&q, n0, pass);
1269 } else {
1270 install_cluster(g, n0, pass, &q);
1271 }
1272 }
1273 }
1274 }
1275 assert(node_queue_is_empty(&q));
1276 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1277 GD_rank(Root)[i].valid = false;
1278 if (GD_flip(g) && GD_rank(g)[i].n > 0) {
1279 node_t **vlist = GD_rank(g)[i].v;
1280 int num_nodes_1 = GD_rank(g)[i].n - 1;
1281 int half_num_nodes_1 = num_nodes_1 / 2;
1282 for (j = 0; j <= half_num_nodes_1; j++)
1283 exchange(vlist[j], vlist[num_nodes_1 - j]);
1284 }
1285 }
1286
1287 if (g == dot_root(g) && ncross(scratch) > 0)
1288 transpose(g, false);
1289 node_queue_free(&q);
1290}
1291
1292void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass) {
1293 edge_t *e;
1294
1295 if (pass == 0) {
1296 for (size_t i = 0; i < ND_out(n0).size; i++) {
1297 e = ND_out(n0).list[i];
1298 if (!MARK(aghead(e))) {
1299 MARK(aghead(e)) = true;
1300 node_queue_push_back(q, aghead(e));
1301 }
1302 }
1303 } else {
1304 for (size_t i = 0; i < ND_in(n0).size; i++) {
1305 e = ND_in(n0).list[i];
1306 if (!MARK(agtail(e))) {
1307 MARK(agtail(e)) = true;
1308 node_queue_push_back(q, agtail(e));
1309 }
1310 }
1311 }
1312}
1313
1315 if (ED_weight(e) == 0)
1316 return false;
1317 if (!inside_cluster(g, agtail(e)))
1318 return false;
1319 if (!inside_cluster(g, aghead(e)))
1320 return false;
1321 return true;
1322}
1323
1324DEFINE_LIST(nodes, node_t *)
1325
1326/* construct nodes reachable from 'here' in post-order.
1327* This is the same as doing a topological sort in reverse order.
1328*/
1329static void postorder(graph_t *g, node_t *v, nodes_t *list, int r) {
1330 edge_t *e;
1331 int i;
1332
1333 MARK(v) = true;
1334 if (ND_flat_out(v).size > 0) {
1335 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1336 if (!constraining_flat_edge(g, e)) continue;
1337 if (!MARK(aghead(e)))
1338 postorder(g, aghead(e), list, r);
1339 }
1340 }
1341 assert(ND_rank(v) == r);
1342 nodes_append(list, v);
1343}
1344
1345static void flat_reorder(graph_t * g)
1346{
1347 int i, r, local_in_cnt, local_out_cnt, base_order;
1348 node_t *v;
1349 nodes_t temprank = {0};
1350 edge_t *flat_e, *e;
1351
1352 if (!GD_has_flat_edges(g))
1353 return;
1354 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1355 if (GD_rank(g)[r].n == 0) continue;
1356 base_order = ND_order(GD_rank(g)[r].v[0]);
1357 for (i = 0; i < GD_rank(g)[r].n; i++)
1358 MARK(GD_rank(g)[r].v[i]) = false;
1359 nodes_clear(&temprank);
1360
1361 /* construct reverse topological sort order in temprank */
1362 for (i = 0; i < GD_rank(g)[r].n; i++) {
1363 if (GD_flip(g)) v = GD_rank(g)[r].v[i];
1364 else v = GD_rank(g)[r].v[GD_rank(g)[r].n - i - 1];
1365
1366 local_in_cnt = local_out_cnt = 0;
1367 for (size_t j = 0; j < ND_flat_in(v).size; j++) {
1368 flat_e = ND_flat_in(v).list[j];
1369 if (constraining_flat_edge(g, flat_e)) local_in_cnt++;
1370 }
1371 for (size_t j = 0; j < ND_flat_out(v).size; j++) {
1372 flat_e = ND_flat_out(v).list[j];
1373 if (constraining_flat_edge(g, flat_e)) local_out_cnt++;
1374 }
1375 if ((local_in_cnt == 0) && (local_out_cnt == 0))
1376 nodes_append(&temprank, v);
1377 else {
1378 if (!MARK(v) && local_in_cnt == 0) {
1379 postorder(g, v, &temprank, r);
1380 }
1381 }
1382 }
1383
1384 if (nodes_size(&temprank) > 0) {
1385 if (!GD_flip(g)) {
1386 nodes_reverse(&temprank);
1387 }
1388 for (i = 0; i < GD_rank(g)[r].n; i++) {
1389 v = GD_rank(g)[r].v[i] = nodes_get(&temprank, (size_t)i);
1390 ND_order(v) = i + base_order;
1391 }
1392
1393 /* nonconstraint flat edges must be made LR */
1394 for (i = 0; i < GD_rank(g)[r].n; i++) {
1395 v = GD_rank(g)[r].v[i];
1396 if (ND_flat_out(v).list) {
1397 for (size_t j = 0; (e = ND_flat_out(v).list[j]); j++) {
1398 if ( (!GD_flip(g) && ND_order(aghead(e)) < ND_order(agtail(e))) ||
1399 ( (GD_flip(g)) && (ND_order(aghead(e)) > ND_order(agtail(e)) ))) {
1400 assert(!constraining_flat_edge(g, e));
1402 j--;
1403 flat_rev(g, e);
1404 }
1405 }
1406 }
1407 }
1408 /* postprocess to restore intended order */
1409 }
1410 /* else do no harm! */
1411 GD_rank(Root)[r].valid = false;
1412 }
1413 nodes_free(&temprank);
1414}
1415
1416static void reorder(graph_t * g, int r, bool reverse, bool hasfixed)
1417{
1418 int changed = 0, nelt;
1419 node_t **vlist = GD_rank(g)[r].v;
1420 node_t **lp, **rp, **ep = vlist + GD_rank(g)[r].n;
1421
1422 for (nelt = GD_rank(g)[r].n - 1; nelt >= 0; nelt--) {
1423 lp = vlist;
1424 while (lp < ep) {
1425 /* find leftmost node that can be compared */
1426 while (lp < ep && ND_mval(*lp) < 0)
1427 lp++;
1428 if (lp >= ep)
1429 break;
1430 /* find the node that can be compared */
1431 bool sawclust = false;
1432 bool muststay = false;
1433 for (rp = lp + 1; rp < ep; rp++) {
1434 if (sawclust && ND_clust(*rp))
1435 continue; /* ### */
1436 if (left2right(g, *lp, *rp)) {
1437 muststay = true;
1438 break;
1439 }
1440 if (ND_mval(*rp) >= 0)
1441 break;
1442 if (ND_clust(*rp))
1443 sawclust = true; /* ### */
1444 }
1445 if (rp >= ep)
1446 break;
1447 if (!muststay) {
1448 const double p1 = ND_mval(*lp);
1449 const double p2 = ND_mval(*rp);
1450 if (p1 > p2 || (p1 >= p2 && reverse)) {
1451 exchange(*lp, *rp);
1452 changed++;
1453 }
1454 }
1455 lp = rp;
1456 }
1457 if (!hasfixed && !reverse)
1458 ep--;
1459 }
1460
1461 if (changed) {
1462 GD_rank(Root)[r].valid = false;
1463 if (r > 0)
1464 GD_rank(Root)[r - 1].valid = false;
1465 }
1466}
1467
1468static void mincross_step(graph_t * g, int pass)
1469{
1470 int r, other, first, last, dir;
1471
1472 bool reverse = pass % 4 < 2;
1473
1474 if (pass % 2 == 0) { /* down pass */
1475 first = GD_minrank(g) + 1;
1476 if (GD_minrank(g) > GD_minrank(Root))
1477 first--;
1478 last = GD_maxrank(g);
1479 dir = 1;
1480 } else { /* up pass */
1481 first = GD_maxrank(g) - 1;
1482 last = GD_minrank(g);
1483 if (GD_maxrank(g) < GD_maxrank(Root))
1484 first++;
1485 dir = -1;
1486 }
1487
1488 for (r = first; r != last + dir; r += dir) {
1489 other = r - dir;
1490 bool hasfixed = medians(g, r, other);
1491 reorder(g, r, reverse, hasfixed);
1492 }
1493 transpose(g, !reverse);
1494}
1495
1496static int local_cross(elist l, int dir)
1497{
1498 int i, j;
1499 int cross = 0;
1500 edge_t *e, *f;
1501 bool is_out = dir > 0;
1502 for (i = 0; (e = l.list[i]); i++) {
1503 if (is_out)
1504 for (j = i + 1; (f = l.list[j]); j++) {
1505 if ((ND_order(aghead(f)) - ND_order(aghead(e)))
1506 * (ED_tail_port(f).p.x - ED_tail_port(e).p.x) < 0)
1507 cross += ED_xpenalty(e) * ED_xpenalty(f);
1508 } else
1509 for (j = i + 1; (f = l.list[j]); j++) {
1510 if ((ND_order(agtail(f)) - ND_order(agtail(e)))
1511 * (ED_head_port(f).p.x - ED_head_port(e).p.x) < 0)
1512 cross += ED_xpenalty(e) * ED_xpenalty(f);
1513 }
1514 }
1515 return cross;
1516}
1517
1518static int64_t rcross(graph_t *g, int r, ints_t *Count) {
1519 int top, bot, max, i, k;
1520 node_t **rtop, *v;
1521
1522 int64_t cross = 0;
1523 max = 0;
1524 rtop = GD_rank(g)[r].v;
1525
1526 // discard any data from previous runs
1527 ints_clear(Count);
1528
1529 for (top = 0; top < GD_rank(g)[r].n; top++) {
1530 edge_t *e;
1531 if (max > 0) {
1532 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1533 for (k = ND_order(aghead(e)) + 1; k <= max; k++)
1534 cross += ints_size(Count) <= (size_t)k
1535 ? 0
1536 : ints_get(Count, (size_t)k) * ED_xpenalty(e);
1537 }
1538 }
1539 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1540 int inv = ND_order(aghead(e));
1541 if (inv > max)
1542 max = inv;
1543 const size_t inv_z = (size_t)inv;
1544 if (ints_size(Count) <= inv_z) {
1545 ints_resize(Count, inv_z + 1, 0);
1546 }
1547 ints_set(Count, inv_z, ints_get(Count, inv_z) + ED_xpenalty(e));
1548 }
1549 }
1550 for (top = 0; top < GD_rank(g)[r].n; top++) {
1551 v = GD_rank(g)[r].v[top];
1552 if (ND_has_port(v))
1553 cross += local_cross(ND_out(v), 1);
1554 }
1555 for (bot = 0; bot < GD_rank(g)[r + 1].n; bot++) {
1556 v = GD_rank(g)[r + 1].v[bot];
1557 if (ND_has_port(v))
1558 cross += local_cross(ND_in(v), -1);
1559 }
1560 return cross;
1561}
1562
1563static int64_t ncross(ints_t *scratch) {
1564 assert(scratch != NULL);
1565 int r;
1566
1567 graph_t *g = Root;
1568 int64_t count = 0;
1569 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
1570 if (GD_rank(g)[r].valid)
1571 count += GD_rank(g)[r].cache_nc;
1572 else {
1573 const int64_t nc = GD_rank(g)[r].cache_nc = rcross(g, r, scratch);
1574 count += nc;
1575 GD_rank(g)[r].valid = true;
1576 }
1577 }
1578 return count;
1579}
1580
1581static int ordercmpf(const void *x, const void *y) {
1582 const int *i0 = x;
1583 const int *i1 = y;
1584 if (*i0 < *i1) {
1585 return -1;
1586 }
1587 if (*i0 > *i1) {
1588 return 1;
1589 }
1590 return 0;
1591}
1592
1593/* flat_mval:
1594 * Calculate a mval for nodes with no in or out non-flat edges.
1595 * Assume (ND_out(n).size == 0) && (ND_in(n).size == 0)
1596 * Find flat edge a->n where a has the largest order and set
1597 * n.mval = a.mval+1, assuming a.mval is defined (>=0).
1598 * If there are no flat in edges, find flat edge n->a where a
1599 * has the smallest order and set * n.mval = a.mval-1, assuming
1600 * a.mval is > 0.
1601 * Return true if n.mval is left -1, indicating a fixed node for sorting.
1602 */
1603static bool flat_mval(node_t * n)
1604{
1605 int i;
1606 edge_t *e, **fl;
1607 node_t *nn;
1608
1609 if (ND_flat_in(n).size > 0) {
1610 fl = ND_flat_in(n).list;
1611 nn = agtail(fl[0]);
1612 for (i = 1; (e = fl[i]); i++)
1613 if (ND_order(agtail(e)) > ND_order(nn))
1614 nn = agtail(e);
1615 if (ND_mval(nn) >= 0) {
1616 ND_mval(n) = ND_mval(nn) + 1;
1617 return false;
1618 }
1619 } else if (ND_flat_out(n).size > 0) {
1620 fl = ND_flat_out(n).list;
1621 nn = aghead(fl[0]);
1622 for (i = 1; (e = fl[i]); i++)
1623 if (ND_order(aghead(e)) < ND_order(nn))
1624 nn = aghead(e);
1625 if (ND_mval(nn) > 0) {
1626 ND_mval(n) = ND_mval(nn) - 1;
1627 return false;
1628 }
1629 }
1630 return true;
1631}
1632
1633#define VAL(node,port) (MC_SCALE * ND_order(node) + (port).order)
1634
1635static bool medians(graph_t * g, int r0, int r1)
1636{
1637 int i, j0, lspan, rspan, *list;
1638 node_t *n, **v;
1639 edge_t *e;
1640 bool hasfixed = false;
1641
1642 list = TI_list;
1643 v = GD_rank(g)[r0].v;
1644 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1645 n = v[i];
1646 size_t j = 0;
1647 if (r1 > r0)
1648 for (j0 = 0; (e = ND_out(n).list[j0]); j0++) {
1649 if (ED_xpenalty(e) > 0)
1650 list[j++] = VAL(aghead(e), ED_head_port(e));
1651 } else
1652 for (j0 = 0; (e = ND_in(n).list[j0]); j0++) {
1653 if (ED_xpenalty(e) > 0)
1654 list[j++] = VAL(agtail(e), ED_tail_port(e));
1655 }
1656 switch (j) {
1657 case 0:
1658 ND_mval(n) = -1;
1659 break;
1660 case 1:
1661 ND_mval(n) = list[0];
1662 break;
1663 case 2:
1664 ND_mval(n) = (list[0] + list[1]) / 2;
1665 break;
1666 default:
1667 qsort(list, j, sizeof(int), ordercmpf);
1668 if (j % 2)
1669 ND_mval(n) = list[j / 2];
1670 else {
1671 /* weighted median */
1672 size_t rm = j / 2;
1673 size_t lm = rm - 1;
1674 rspan = list[j - 1] - list[rm];
1675 lspan = list[lm] - list[0];
1676 if (lspan == rspan)
1677 ND_mval(n) = (list[lm] + list[rm]) / 2;
1678 else {
1679 double w = list[lm] * (double)rspan + list[rm] * (double)lspan;
1680 ND_mval(n) = w / (lspan + rspan);
1681 }
1682 }
1683 }
1684 }
1685 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1686 n = v[i];
1687 if ((ND_out(n).size == 0) && (ND_in(n).size == 0))
1688 hasfixed |= flat_mval(n);
1689 }
1690 return hasfixed;
1691}
1692
1693static int nodeposcmpf(const void *x, const void *y) {
1694// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1695// as the later usage is const. We need the cast because the macros use
1696// non-const pointers for genericity.
1697#ifdef __GNUC__
1698#pragma GCC diagnostic push
1699#pragma GCC diagnostic ignored "-Wcast-qual"
1700#endif
1701 node_t **n0 = (node_t **)x;
1702 node_t **n1 = (node_t **)y;
1703#ifdef __GNUC__
1704#pragma GCC diagnostic pop
1705#endif
1706 if (ND_order(*n0) < ND_order(*n1)) {
1707 return -1;
1708 }
1709 if (ND_order(*n0) > ND_order(*n1)) {
1710 return 1;
1711 }
1712 return 0;
1713}
1714
1715static int edgeidcmpf(const void *x, const void *y) {
1716// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1717// as the later usage is const. We need the cast because the macros use
1718// non-const pointers for genericity.
1719#ifdef __GNUC__
1720#pragma GCC diagnostic push
1721#pragma GCC diagnostic ignored "-Wcast-qual"
1722#endif
1723 edge_t **e0 = (edge_t **)x;
1724 edge_t **e1 = (edge_t **)y;
1725#ifdef __GNUC__
1726#pragma GCC diagnostic pop
1727#endif
1728 if (AGSEQ(*e0) < AGSEQ(*e1)) {
1729 return -1;
1730 }
1731 if (AGSEQ(*e0) > AGSEQ(*e1)) {
1732 return 1;
1733 }
1734 return 0;
1735}
1736
1737/* following code deals with weights of edges of "virtual" nodes */
1738#define ORDINARY 0
1739#define SINGLETON 1
1740#define VIRTUALNODE 2
1741#define NTYPES 3
1742
1743#define C_EE 1
1744#define C_VS 2
1745#define C_SS 2
1746#define C_VV 4
1747
1748static int table[NTYPES][NTYPES] = {
1749 /* ordinary */ {C_EE, C_EE, C_EE},
1750 /* singleton */ {C_EE, C_SS, C_VS},
1751 /* virtual */ {C_EE, C_VS, C_VV}
1752};
1753
1754static int endpoint_class(node_t * n)
1755{
1756 if (ND_node_type(n) == VIRTUAL)
1757 return VIRTUALNODE;
1758 if (ND_weight_class(n) <= 1)
1759 return SINGLETON;
1760 return ORDINARY;
1761}
1762
1764{
1765 int t;
1767
1768 /* check whether the upcoming computation will overflow */
1769 assert(t >= 0);
1770 if (INT_MAX / t < ED_weight(e)) {
1771 agerrorf("overflow when calculating virtual weight of edge\n");
1772 graphviz_exit(EXIT_FAILURE);
1773 }
1774
1775 ED_weight(e) *= t;
1776}
1777
1778#ifdef DEBUG
1779void check_rs(graph_t * g, int null_ok)
1780{
1781 int i, r;
1782 node_t *v, *prev;
1783
1784 fprintf(stderr, "\n\n%s:\n", agnameof(g));
1785 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1786 fprintf(stderr, "%d: ", r);
1787 prev = NULL;
1788 for (i = 0; i < GD_rank(g)[r].n; i++) {
1789 v = GD_rank(g)[r].v[i];
1790 if (v == NULL) {
1791 fprintf(stderr, "NULL\t");
1792 if (!null_ok)
1793 abort();
1794 } else {
1795 fprintf(stderr, "%s(%f)\t", agnameof(v), ND_mval(v));
1796 assert(ND_rank(v) == r);
1797 assert(v != prev);
1798 prev = v;
1799 }
1800 }
1801 fprintf(stderr, "\n");
1802 }
1803}
1804
1805void check_order(void)
1806{
1807 int i, r;
1808 node_t *v;
1809 graph_t *g = Root;
1810
1811 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1812 assert(GD_rank(g)[r].v[GD_rank(g)[r].n] == NULL);
1813 for (i = 0; (v = GD_rank(g)[r].v[i]); i++) {
1814 assert(ND_rank(v) == r);
1815 assert(ND_order(v) == i);
1816 }
1817 }
1818}
1819#endif
1820
1822{
1823 char *p;
1824 double f;
1825
1826 /* set default values */
1827 MinQuit = 8;
1828 MaxIter = 24;
1829
1830 p = agget(g, "mclimit");
1831 if (p && (f = atof(p)) > 0.0) {
1832 MinQuit = MAX(1, MinQuit * f);
1833 MaxIter = MAX(1, MaxIter * f);
1834 }
1835}
1836
1837#ifdef DEBUG
1838void check_exchange(node_t * v, node_t * w)
1839{
1840 int i, r;
1841 node_t *u;
1842
1843 if (ND_clust(v) == NULL && ND_clust(w) == NULL)
1844 return;
1845 assert(ND_clust(v) == NULL || ND_clust(w) == NULL);
1846 assert(ND_rank(v) == ND_rank(w));
1847 assert(ND_order(v) < ND_order(w));
1848 r = ND_rank(v);
1849
1850 for (i = ND_order(v) + 1; i < ND_order(w); i++) {
1851 u = GD_rank(dot_root(v))[r].v[i];
1852 if (ND_clust(u))
1853 abort();
1854 }
1855}
1856
1857void check_vlists(graph_t * g)
1858{
1859 int c, i, j, r;
1860 node_t *u;
1861
1862 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1863 for (i = 0; i < GD_rank(g)[r].n; i++) {
1864 u = GD_rank(g)[r].v[i];
1865 j = ND_order(u);
1866 assert(GD_rank(Root)[r].v[j] == u);
1867 }
1868 if (GD_rankleader(g)) {
1869 u = GD_rankleader(g)[r];
1870 j = ND_order(u);
1871 assert(GD_rank(Root)[r].v[j] == u);
1872 }
1873 }
1874 for (c = 1; c <= GD_n_cluster(g); c++)
1875 check_vlists(GD_clust(g)[c]);
1876}
1877
1878void node_in_root_vlist(node_t * n)
1879{
1880 node_t **vptr;
1881
1882 for (vptr = GD_rank(Root)[ND_rank(n)].v; *vptr; vptr++)
1883 if (*vptr == n)
1884 break;
1885 if (*vptr == 0)
1886 abort();
1887}
1888#endif /* DEBUG code */
static agxbuf last
last message
Definition agerror.c:29
static void agxbfree(agxbuf *xb)
free any malloced resources
Definition agxbuf.h:78
static int agxbprint(agxbuf *xb, const char *fmt,...)
Printf-style output to an agxbuf.
Definition agxbuf.h:234
static WUR char * agxbuse(agxbuf *xb)
Definition agxbuf.h:307
Memory allocation wrappers that exit on failure.
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
static void * gv_alloc(size_t size)
Definition alloc.h:47
#define MIN(a, b)
Definition arith.h:28
abstract graph C library, Cgraph API
void class2(graph_t *g)
Definition class2.c:159
#define exchange(h, i, j)
Definition closest.c:85
bool mapbool(const char *p)
Definition utils.c:337
char * late_string(void *obj, attrsym_t *attr, char *defaultValue)
Definition utils.c:80
#define NORMAL
Definition const.h:24
#define FLATORDER
Definition const.h:28
#define NEW_RANK
Definition const.h:257
#define VIRTUAL
Definition const.h:25
#define CLUSTER
Definition const.h:40
#define REVERSED
Definition const.h:27
void decompose(graph_t *g, int pass)
Definition decomp.c:114
Agraph_t * dot_root(void *p)
Definition dotinit.c:506
bool is_cluster(Agraph_t *)
Definition rank.c:460
void flat_edge(Agraph_t *, Agedge_t *)
Definition fastgr.c:215
void merge_oneway(Agedge_t *, Agedge_t *)
Definition fastgr.c:289
Agedge_t * new_virtual_edge(Agnode_t *, Agnode_t *, Agedge_t *)
Definition fastgr.c:131
Agedge_t * find_flat_edge(Agnode_t *, Agnode_t *)
Definition fastgr.c:54
void delete_flat_edge(Agedge_t *)
Definition fastgr.c:222
static NORETURN void graphviz_exit(int status)
Definition exit.h:23
int MaxIter
Definition globals.h:61
Agsym_t * G_ordering
Definition globals.h:71
Agsym_t * N_ordering
Definition globals.h:77
static bool Verbose
Definition gml2gv.c:23
void free(void *)
node NULL
Definition grammar.y:163
static int cnt(Dict_t *d, Dtlink_t **set)
Definition graph.c:200
int agnedges(Agraph_t *g)
Definition graph.c:165
int agdegree(Agraph_t *g, Agnode_t *n, int in, int out)
Definition graph.c:227
int agnnodes(Agraph_t *g)
Definition graph.c:159
char * agget(void *obj, char *name)
Definition attr.c:465
#define ED_to_orig(e)
Definition types.h:598
Agedge_t * agedge(Agraph_t *g, Agnode_t *t, Agnode_t *h, char *name, int createflag)
Definition edge.c:256
int agdeledge(Agraph_t *g, Agedge_t *arg_e)
Definition edge.c:330
Agedge_t * agnxtin(Agraph_t *g, Agedge_t *e)
Definition edge.c:69
#define ED_xpenalty(e)
Definition types.h:601
Agedge_t * agfstout(Agraph_t *g, Agnode_t *n)
Definition edge.c:24
#define agtail(e)
Definition cgraph.h:883
#define ED_edge_type(e)
Definition types.h:582
#define ED_weight(e)
Definition types.h:603
#define aghead(e)
Definition cgraph.h:884
Agedge_t * agnxtout(Agraph_t *g, Agedge_t *e)
Definition edge.c:39
#define ED_head_port(e)
Definition types.h:588
Agedge_t * agfstin(Agraph_t *g, Agnode_t *n)
Definition edge.c:55
#define ED_label(e)
Definition types.h:589
#define ED_tail_port(e)
Definition types.h:597
void agwarningf(const char *fmt,...)
Definition agerror.c:173
void agerrorf(const char *fmt,...)
Definition agerror.c:165
#define GD_minrank(g)
Definition types.h:384
#define GD_maxrank(g)
Definition types.h:382
#define GD_clust(g)
Definition types.h:360
int agclose(Agraph_t *g)
deletes a graph, freeing its associated storage
Definition graph.c:97
#define GD_flags(g)
Definition types.h:365
#define GD_rank(g)
Definition types.h:395
#define GD_has_flat_edges(g)
Definition types.h:370
#define GD_nlist(g)
Definition types.h:393
Agdesc_t Agstrictdirected
strict directed. A strict graph cannot have multi-edges or self-arcs.
Definition graph.c:275
#define GD_n_cluster(g)
Definition types.h:389
Agraph_t * agopen(char *name, Agdesc_t desc, Agdisc_t *disc)
creates a new graph with the given name and kind
Definition graph.c:44
#define GD_comp(g)
Definition types.h:362
#define GD_flip(g)
Definition types.h:378
#define GD_rankleader(g)
Definition types.h:396
Agnode_t * agnode(Agraph_t *g, char *name, int createflag)
Definition node.c:140
#define ND_rank(n)
Definition types.h:523
#define ND_prev(n)
Definition types.h:521
#define ND_ht(n)
Definition types.h:500
Agnode_t * agnxtnode(Agraph_t *g, Agnode_t *n)
Definition node.c:47
Agnode_t * agfstnode(Agraph_t *g)
Definition node.c:40
#define ND_has_port(n)
Definition types.h:495
#define ND_next(n)
Definition types.h:510
Agnode_t * agsubnode(Agraph_t *g, Agnode_t *n, int createflag)
Definition node.c:254
#define ND_clust(n)
Definition types.h:489
#define ND_other(n)
Definition types.h:514
#define ND_alg(n)
Definition types.h:484
#define ND_flat_out(n)
Definition types.h:493
#define ND_rw(n)
Definition types.h:525
#define ND_node_type(n)
Definition types.h:511
#define ND_lw(n)
Definition types.h:506
#define ND_mval(n)
Definition types.h:508
int agdelnode(Agraph_t *g, Agnode_t *arg_n)
removes a node from a graph or subgraph.
Definition node.c:190
#define ND_order(n)
Definition types.h:513
#define ND_UF_size(n)
Definition types.h:487
#define ND_weight_class(n)
Definition types.h:535
#define ND_low(n)
Definition types.h:505
#define ND_ranktype(n)
Definition types.h:524
#define ND_flat_in(n)
Definition types.h:492
#define ND_in(n)
Definition types.h:501
#define ND_out(n)
Definition types.h:515
char * agnameof(void *)
returns a string descriptor for the object.
Definition id.c:143
int agcontains(Agraph_t *, void *obj)
returns non-zero if obj is a member of (sub)graph
Definition obj.c:233
Agraph_t * agroot(void *obj)
Definition obj.c:168
#define AGSEQ(obj)
Definition cgraph.h:225
void * agbindrec(void *obj, const char *name, unsigned int recsize, int move_to_front)
attaches a new record of the given size to the object
Definition rec.c:89
Agraph_t * agfstsubg(Agraph_t *g)
Definition subg.c:75
Agraph_t * agnxtsubg(Agraph_t *subg)
Definition subg.c:80
Agraph_t * agsubg(Agraph_t *g, char *name, int cflag)
Definition subg.c:55
static void indent(int ix)
Definition gv2gml.c:96
bool rm(Agraph_t *g)
Definition gv.cpp:584
Arithmetic helper functions.
#define SWAP(a, b)
Definition gv_math.h:130
$2 u p prev
Definition htmlparse.y:297
static double cross(double *u, double *v)
#define ND_onstack(n)
Definition acyclic.c:29
#define ND_mark(n)
Definition acyclic.c:28
static Agedge_t * top(edge_stack_t *sp)
Definition tred.c:73
void expand_cluster(graph_t *subg)
Definition cluster.c:290
void install_cluster(graph_t *g, node_t *n, int pass, node_queue_t *q)
Definition cluster.c:389
void mark_lowclusters(Agraph_t *root)
Definition cluster.c:404
#define DEFINE_LIST(name, type)
Definition list.h:22
#define neighbor(t, i, edim, elist)
Definition make_map.h:41
#define delta
Definition maze.c:133
#define isBackedge(e)
Definition mincross.c:193
static int betweenclust(edge_t *e)
Definition mincross.c:433
#define ND_hi(n)
Definition mincross.c:177
#define flatindex(v)
Definition mincross.c:44
static void free_matrix(adjmatrix_t *p)
Definition mincross.c:411
static bool ReMincross
Definition mincross.c:89
static bool flat_mval(node_t *n)
Definition mincross.c:1603
static int64_t mincross(graph_t *g, int startpass, ints_t *scratch)
Definition mincross.c:692
static bool inside_cluster(graph_t *g, node_t *v)
Definition mincross.c:905
#define ND_x(n)
Definition mincross.c:175
#define ORDINARY
Definition mincross.c:1738
static int64_t rcross(graph_t *g, int r, ints_t *Count)
Definition mincross.c:1518
static void init_mccomp(graph_t *g, size_t c)
Definition mincross.c:421
static void mincross_step(graph_t *g, int pass)
Definition mincross.c:1468
static int topsort(Agraph_t *g, Agraph_t *sg, Agnode_t **arr)
Definition mincross.c:206
static bool medians(graph_t *g, int r0, int r1)
Definition mincross.c:1635
void build_ranks(graph_t *g, int pass, ints_t *scratch)
Definition mincross.c:1224
static void reorder(graph_t *g, int r, bool reverse, bool hasfixed)
Definition mincross.c:1416
#define VAL(node, port)
Definition mincross.c:1633
static int edgeidcmpf(const void *, const void *)
Definition mincross.c:1715
static void flat_breakcycles(graph_t *g)
Definition mincross.c:1116
static void cleanup2(graph_t *g, int64_t nc)
Definition mincross.c:835
#define MARK(v)
Definition mincross.c:42
static bool is_a_normal_node_of(graph_t *g, node_t *v)
Definition mincross.c:889
static void save_best(graph_t *g)
Definition mincross.c:771
#define C_VS
Definition mincross.c:1744
static void init_mincross(graph_t *g)
Definition mincross.c:1029
#define ND_np(n)
Definition mincross.c:178
static int64_t transpose_step(graph_t *g, int r, bool reverse)
Definition mincross.c:634
static void fixLabelOrder(graph_t *g, rank_t *rk)
Definition mincross.c:250
void virtual_weight(edge_t *e)
Definition mincross.c:1763
static void merge2(graph_t *g)
Definition mincross.c:808
static node_t * furthestnode(graph_t *g, node_t *v, int dir)
Definition mincross.c:909
static int out_cross(node_t *v, node_t *w)
Definition mincross.c:602
static int ordercmpf(const void *, const void *)
Definition mincross.c:1581
void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass)
Definition mincross.c:1292
static void do_ordering(graph_t *g, bool outflag)
Definition mincross.c:480
void checkLabelOrder(graph_t *g)
Definition mincross.c:305
static int64_t mincross_clust(graph_t *g, ints_t *scratch)
Definition mincross.c:541
static int GlobalMinRank
Definition mincross.c:86
static const double Convergence
Definition mincross.c:83
void install_in_rank(graph_t *g, node_t *n)
Definition mincross.c:1176
static adjmatrix_t * new_matrix(size_t i, size_t j)
Definition mincross.c:403
#define SINGLETON
Definition mincross.c:1739
static Agraph_t * realFillRanks(Agraph_t *g, int rnks[], int rnks_sz, Agraph_t *sg)
Definition mincross.c:982
static Agnode_t * findSource(Agraph_t *g, Agraph_t *sg)
Definition mincross.c:196
static int * TI_list
Definition mincross.c:88
void dot_mincross(graph_t *g)
Definition mincross.c:348
void rec_save_vlists(graph_t *g)
Definition mincross.c:933
#define C_EE
Definition mincross.c:1743
static void do_ordering_node(graph_t *g, node_t *n, bool outflag)
Definition mincross.c:440
static int64_t in_cross(node_t *v, node_t *w)
Definition mincross.c:583
static graph_t * Root
Definition mincross.c:85
#define C_VV
Definition mincross.c:1746
static void flat_search(graph_t *g, node_t *v)
Definition mincross.c:1080
static int64_t ncross(ints_t *scratch)
Definition mincross.c:1563
static void ordered_edges(graph_t *g)
Definition mincross.c:514
static void transpose(graph_t *g, bool reverse)
Definition mincross.c:675
#define NTYPES
Definition mincross.c:1741
void rec_reset_vlists(graph_t *g)
Definition mincross.c:943
static void merge_components(graph_t *g)
Definition mincross.c:784
static void mincross_options(graph_t *g)
Definition mincross.c:1821
static int endpoint_class(node_t *n)
Definition mincross.c:1754
static int getComp(graph_t *g, node_t *n, graph_t *comp, int *indices)
Definition mincross.c:225
static int GlobalMaxRank
Definition mincross.c:86
static bool left2right(graph_t *g, node_t *v, node_t *w)
Definition mincross.c:557
static int local_cross(elist l, int dir)
Definition mincross.c:1496
static void flat_reorder(graph_t *g)
Definition mincross.c:1345
#define ELT(M, i, j)
Definition mincross.c:419
#define C_SS
Definition mincross.c:1745
static void flat_rev(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1053
static void emptyComp(graph_t *sg)
Definition mincross.c:182
static bool is_a_vnode_of_an_edge_of(graph_t *g, node_t *v)
Definition mincross.c:893
static void fillRanks(Agraph_t *g)
Definition mincross.c:1021
static void do_ordering_for_nodes(graph_t *g)
Definition mincross.c:489
static void postorder(graph_t *g, node_t *v, nodes_t *list, int r)
Definition mincross.c:1329
static int MinQuit
Definition mincross.c:82
static edge_t ** TE_list
Definition mincross.c:87
void allocate_ranks(graph_t *g)
Definition mincross.c:1148
#define ND_lo(n)
Definition mincross.c:176
static int table[NTYPES][NTYPES]
Definition mincross.c:1748
static void restore_best(graph_t *g)
Definition mincross.c:753
static bool constraining_flat_edge(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1314
#define ND_idx(n)
Definition mincross.c:179
static int nodeposcmpf(const void *, const void *)
Definition mincross.c:1693
#define saveorder(v)
Definition mincross.c:43
void save_vlist(graph_t *g)
Definition mincross.c:923
#define VIRTUALNODE
Definition mincross.c:1740
#define M
Definition randomkit.c:90
static bool streq(const char *a, const char *b)
are a and b equal?
Definition streq.h:11
Agobj_t base
Definition cgraph.h:269
Agrec_t * data
stores programmer-defined data, access with AGDATA
Definition cgraph.h:212
graph or subgraph
Definition cgraph.h:424
Agraph_t * parent
Definition cgraph.h:433
implementation of Agrec_t
Definition cgraph.h:172
size_t nrows
Definition mincross.c:36
char * data
Definition mincross.c:38
size_t ncols
Definition mincross.c:37
Definition types.h:251
edge_t ** list
Definition types.h:252
int hi
Definition mincross.c:171
Agrec_t h
Definition mincross.c:170
Agnode_t * np
Definition mincross.c:172
node_t ** v
Definition types.h:202
int n
Definition types.h:201
double elapsed_sec(void)
Definition timing.c:48
void start_timer(void)
Definition timing.c:43
#define elist_append(item, L)
Definition types.h:261
#define alloc_elist(n, L)
Definition types.h:267
Definition grammar.c:93
#define MAX(a, b)
Definition write.c:31