Graphviz 14.1.1~dev.20251209.0353
Loading...
Searching...
No Matches
mincross.c
Go to the documentation of this file.
1/*************************************************************************
2 * Copyright (c) 2011 AT&T Intellectual Property
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * https://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors: Details at https://graphviz.org
9 *************************************************************************/
10
11
12/*
13 * dot_mincross(g) takes a ranked graphs, and finds an ordering
14 * that avoids edge crossings. clusters are expanded.
15 * N.B. the rank structure is global (not allocated per cluster)
16 * because mincross may compare nodes in different clusters.
17 */
18
19#include <assert.h>
20#include <cgraph/cgraph.h>
21#include <dotgen/dot.h>
22#include <inttypes.h>
23#include <limits.h>
24#include <stdbool.h>
25#include <stdint.h>
26#include <stdlib.h>
27#include <string.h>
28#include <util/alloc.h>
29#include <util/bitarray.h>
30#include <util/exit.h>
31#include <util/gv_math.h>
32#include <util/itos.h>
33#include <util/list.h>
34#include <util/streq.h>
35
37 size_t nrows;
38 size_t ncols;
39 uint8_t *data;
40};
41
48static bool matrix_get(adjmatrix_t *me, size_t row, size_t col) {
49 assert(me != NULL);
50
51 // if this index is beyond anything allocated, infer it as unset
52 if (row >= me->nrows) {
53 return false;
54 }
55 if (col >= me->ncols) {
56 return false;
57 }
58
59 const size_t index = row * me->ncols + col;
60 const size_t byte_index = index / 8;
61 const size_t bit_index = index % 8;
62 return (me->data[byte_index] >> bit_index) & 1;
63}
64
70static void matrix_set(adjmatrix_t *me, size_t row, size_t col) {
71 assert(me != NULL);
72
73 // if we are updating beyond allocated space, expand the backing store
74 if (row >= me->nrows || col >= me->ncols) {
75 // allocate an enlarged space
76 const size_t nrows = zmax(me->nrows, row + 1);
77 const size_t ncols = zmax(me->ncols, col + 1);
78 const size_t bits = nrows * ncols;
79 const size_t bytes = bits / 8 + (bits % 8 == 0 ? 0 : 1);
80 uint8_t *const data = gv_alloc(bytes);
81
82 // replicate set bits
83 for (size_t r = 0; r < me->nrows; ++r) {
84 for (size_t c = 0; c < me->ncols; ++c) {
85 if (!matrix_get(me, r, c)) {
86 continue;
87 }
88 const size_t index = r * ncols + c;
89 const size_t byte_index = index / 8;
90 const size_t bit_index = index % 8;
91 data[byte_index] |= (uint8_t)(UINT8_C(1) << bit_index);
92 }
93 }
94
95 // replace old matrix with newly expanded one
96 free(me->data);
97 *me = (adjmatrix_t){.nrows = nrows, .ncols = ncols, .data = data};
98 }
99
100 assert(row < me->nrows);
101 assert(col < me->ncols);
102
103 const size_t index = row * me->ncols + col;
104 const size_t byte_index = index / 8;
105 const size_t bit_index = index % 8;
106 me->data[byte_index] |= (uint8_t)(UINT8_C(1) << bit_index);
107}
108
109/* #define DEBUG */
110#define MARK(v) (ND_mark(v))
111#define saveorder(v) (ND_coord(v)).x
112#define flatindex(v) ((size_t)ND_low(v))
113
114 /* forward declarations */
115static bool medians(graph_t * g, int r0, int r1);
116static int nodeposcmpf(const void *, const void *);
117static int edgeidcmpf(const void *, const void *);
118static void flat_breakcycles(graph_t * g);
119static void flat_reorder(graph_t * g);
120static void flat_search(graph_t * g, node_t * v);
121static void init_mincross(graph_t * g);
122static void merge2(graph_t * g);
123static void init_mccomp(graph_t *g, size_t c);
124static void cleanup2(graph_t *g, int64_t nc);
126static int64_t mincross_clust(graph_t *g);
128static int64_t mincross(graph_t *g, int startpass);
129static void mincross_step(graph_t * g, int pass);
130static void mincross_options(graph_t * g);
131static void save_best(graph_t * g);
132static void restore_best(graph_t * g);
133
142static adjmatrix_t *new_matrix(size_t initial_rows, size_t initial_columns);
143
144static void free_matrix(adjmatrix_t * p);
145static int ordercmpf(const void *, const void *);
146static int64_t ncross(void);
147#ifdef DEBUG
148void check_rs(graph_t * g, int null_ok);
149void check_order(void);
150void check_vlists(graph_t * g);
151void node_in_root_vlist(node_t * n);
152#endif
153
154
155 /* mincross parameters */
156static int MinQuit;
157static const double Convergence = .995;
158
159static graph_t *Root;
162static int *TI_list;
163static bool ReMincross;
164
165#if defined(DEBUG) && DEBUG > 1
166static void indent(graph_t* g)
167{
168 if (g->parent) {
169 fprintf (stderr, " ");
170 indent(g->parent);
171 }
172}
173
175static void nname(node_t *v, FILE *stream) {
176 if (ND_node_type(v)) {
177 if (ND_ranktype(v) == CLUSTER)
178 fprintf(stream, "v%s_%p", agnameof(ND_clust(v)), v);
179 else
180 fprintf(stream, "v_%p", v);
181 } else
182 fputs(agnameof(v), stream);
183}
184static void dumpg (graph_t* g)
185{
186 edge_t* e;
187
188 fprintf (stderr, "digraph A {\n");
189 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
190 fprintf (stderr, " subgraph {rank=same ");
191 const char *trailer = " }\n";
192 for (int i = 0; i < GD_rank(g)[r].n; i++) {
193 node_t *const v = GD_rank(g)[r].v[i];
194 if (i > 0) {
195 fputs(" -> ", stderr);
196 trailer = " [style=invis]}\n";
197 }
198 nname(v, stderr);
199 }
200 fputs(trailer, stderr);
201 }
202 for (int r = GD_minrank(g); r < GD_maxrank(g); r++) {
203 for (int i = 0; i < GD_rank(g)[r].n; i++) {
204 node_t *const v = GD_rank(g)[r].v[i];
205 for (int j = 0; (e = ND_out(v).list[j]); j++) {
206 nname(v, stderr);
207 fputs(" -> ", stderr);
208 nname(aghead(e), stderr);
209 fputc('\n', stderr);
210 }
211 }
212 }
213 fprintf (stderr, "}\n");
214}
215static void dumpr (graph_t* g, int edges)
216{
217 int j, i, r;
218 node_t* v;
219 edge_t* e;
220
221 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
222 fprintf (stderr, "[%d] ", r);
223 for (i = 0; i < GD_rank(g)[r].n; i++) {
224 v = GD_rank(g)[r].v[i];
225 nname(v, stderr);
226 fprintf(stderr, "(%.02f,%d) ", saveorder(v),ND_order(v));
227 }
228 fprintf (stderr, "\n");
229 }
230 if (edges == 0) return;
231 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
232 for (i = 0; i < GD_rank(g)[r].n; i++) {
233 v = GD_rank(g)[r].v[i];
234 for (j = 0; (e = ND_out(v).list[j]); j++) {
235 nname(v, stderr);
236 fputs(" -> ", stderr);
237 nname(aghead(e), stderr);
238 fputc('\n', stderr);
239 }
240 }
241 }
242}
243#endif
244
245typedef struct {
247 int x, lo, hi;
249} info_t;
250
251#define ND_x(n) (((info_t*)AGDATA(n))->x)
252#define ND_lo(n) (((info_t*)AGDATA(n))->lo)
253#define ND_hi(n) (((info_t*)AGDATA(n))->hi)
254#define ND_np(n) (((info_t*)AGDATA(n))->np)
255#define ND_idx(n) (ND_order(ND_np(n)))
256
257static void
259{
260 Agnode_t* n;
261 Agnode_t* nxt;
262
263 for (n = agfstnode(sg); n; n = nxt) {
264 nxt = agnxtnode (sg, n);
265 agdelnode(sg,n);
266 }
267}
268
269#define isBackedge(e) (ND_idx(aghead(e)) > ND_idx(agtail(e)))
270
271static Agnode_t*
273{
274 Agnode_t* n;
275
276 for (n = agfstnode(sg); n; n = agnxtnode(sg, n))
277 if (agdegree(g,n,1,0) == 0) return n;
278 return NULL;
279}
280
281static int
283{
284 Agnode_t* n;
285 Agedge_t* e;
286 Agedge_t* nxte;
287 int cnt = 0;
288
289 while ((n = findSource(g, sg))) {
290 arr[cnt++] = ND_np(n);
291 agdelnode(sg, n);
292 for (e = agfstout(g, n); e; e = nxte) {
293 nxte = agnxtout(g, e);
294 agdeledge(g, e);
295 }
296 }
297 return cnt;
298}
299
300static int
301getComp (graph_t* g, node_t* n, graph_t* comp, int* indices)
302{
303 int backedge = 0;
304 Agedge_t* e;
305
306 ND_x(n) = 1;
307 indices[agnnodes(comp)] = ND_idx(n);
308 agsubnode(comp, n, 1);
309 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
310 if (isBackedge(e)) backedge++;
311 if (!ND_x(aghead(e)))
312 backedge += getComp(g, aghead(e), comp, indices);
313 }
314 for (e = agfstin(g,n); e; e = agnxtin(g,e)) {
315 if (isBackedge(e)) backedge++;
316 if (!ND_x(agtail(e)))
317 backedge += getComp(g, agtail(e), comp, indices);
318 }
319 return backedge;
320}
321
323static void
325{
326 int cnt;
327 bool haveBackedge = false;
328 Agraph_t* sg;
329 Agnode_t* n;
330 Agnode_t* nxtp;
331 Agnode_t* v;
332
333 for (n = agfstnode(g); n; n = nxtp) {
334 v = nxtp = agnxtnode(g, n);
335 for (; v; v = agnxtnode(g, v)) {
336 if (ND_hi(v) <= ND_lo(n)) {
337 haveBackedge = true;
338 agedge(g, v, n, NULL, 1);
339 }
340 else if (ND_hi(n) <= ND_lo(v)) {
341 agedge(g, n, v, NULL, 1);
342 }
343 }
344 }
345 if (!haveBackedge) return;
346
347 sg = agsubg(g, "comp", 1);
348 Agnode_t **arr = gv_calloc(agnnodes(g), sizeof(Agnode_t*));
349 int *indices = gv_calloc(agnnodes(g), sizeof(int));
350
351 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
352 if (ND_x(n) || agdegree(g,n,1,1) == 0) continue;
353 if (getComp(g, n, sg, indices)) {
354 int i, sz = agnnodes(sg);
355 cnt = topsort (g, sg, arr);
356 assert (cnt == sz);
357 qsort(indices, cnt, sizeof(int), ordercmpf);
358 for (i = 0; i < sz; i++) {
359 ND_order(arr[i]) = indices[i];
360 rk->v[indices[i]] = arr[i];
361 }
362 }
363 emptyComp(sg);
364 }
365 free(indices);
366 free (arr);
367}
368
369/* Check that the ordering of labels for flat edges is consistent.
370 * This is necessary because dot_position will attempt to force the label
371 * to be between the edge's vertices. This can lead to an infeasible problem.
372 *
373 * We check each rank for any flat edge labels (as dummy nodes) and create a
374 * graph with a node for each label. If the graph contains more than 1 node, we
375 * call fixLabelOrder to see if there really is a problem and, if so, fix it.
376 */
377void
379{
380 graph_t* lg = NULL;
381
382 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
383 rank_t *const rk = GD_rank(g)+r;
384 for (int j = 0; j < rk->n; j++) {
385 Agnode_t *const u = rk->v[j];
386 if (ND_alg(u)) {
387 if (!lg) lg = agopen ("lg", Agstrictdirected, 0);
388 Agnode_t *const n = agnode(lg, ITOS(j), 1);
389 agbindrec(n, "info", sizeof(info_t), true);
390 int lo = ND_order(aghead(ND_out(u).list[0]));
391 int hi = ND_order(aghead(ND_out(u).list[1]));
392 if (lo > hi) {
393 SWAP(&lo, &hi);
394 }
395 ND_lo(n) = lo;
396 ND_hi(n) = hi;
397 ND_np(n) = u;
398 }
399 }
400 if (lg) {
401 if (agnnodes(lg) > 1) fixLabelOrder (lg, rk);
402 agclose(lg);
403 lg = NULL;
404 }
405 }
406}
407
408/* Minimize edge crossings
409 * Note that nodes are not placed into GD_rank(g) until mincross()
410 * is called.
411 */
413 int64_t nc;
414 char *s;
415
416 /* check whether malformed input has led to empty cluster that the crossing
417 * functions will not anticipate
418 */
419 {
420 size_t i;
421 for (i = 1; i <= (size_t)GD_n_cluster(g); ) {
422 if (agfstnode(GD_clust(g)[i]) == NULL) {
423 agwarningf("removing empty cluster\n");
424 memmove(&GD_clust(g)[i], &GD_clust(g)[i + 1],
425 ((size_t)GD_n_cluster(g) - i) * sizeof(GD_clust(g)[0]));
426 --GD_n_cluster(g);
427 } else {
428 ++i;
429 }
430 }
431 }
432
433 init_mincross(g);
434
435 size_t comp;
436 for (nc = 0, comp = 0; comp < GD_comp(g).size; comp++) {
437 init_mccomp(g, comp);
438 const int64_t mc = mincross(g, 0);
439 if (mc < 0) {
440 return -1;
441 }
442 nc += mc;
443 }
444
445 merge2(g);
446
447 /* run mincross on contents of each cluster */
448 for (int c = 1; c <= GD_n_cluster(g); c++) {
449 const int64_t mc = mincross_clust(GD_clust(g)[c]);
450 if (mc < 0) {
451 return -1;
452 }
453 nc += mc;
454#ifdef DEBUG
455 check_vlists(GD_clust(g)[c]);
456 check_order();
457#endif
458 }
459
460 if (GD_n_cluster(g) > 0 && (!(s = agget(g, "remincross")) || mapbool(s))) {
462 ReMincross = true;
463 const int64_t mc = mincross(g, 2);
464 if (mc < 0) {
465 return -1;
466 }
467 nc = mc;
468#ifdef DEBUG
469 for (int c = 1; c <= GD_n_cluster(g); c++)
470 check_vlists(GD_clust(g)[c]);
471#endif
472 }
473 cleanup2(g, nc);
474 return 0;
475}
476
477static adjmatrix_t *new_matrix(size_t initial_rows, size_t initial_columns) {
478 adjmatrix_t *rv = gv_alloc(sizeof(adjmatrix_t));
479 const size_t bits = initial_rows * initial_columns;
480 const size_t bytes = bits / 8 + (bits % 8 == 0 ? 0 : 1);
481 uint8_t *const data = gv_alloc(bytes);
482 *rv = (adjmatrix_t){.nrows = initial_rows, .ncols = initial_columns, .data = data};
483 return rv;
484}
485
486static void free_matrix(adjmatrix_t * p)
487{
488 if (p) {
489 free(p->data);
490 free(p);
491 }
492}
493
494static void init_mccomp(graph_t *g, size_t c) {
495 int r;
496
497 GD_nlist(g) = GD_comp(g).list[c];
498 if (c > 0) {
499 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
500 GD_rank(g)[r].v = GD_rank(g)[r].v + GD_rank(g)[r].n;
501 GD_rank(g)[r].n = 0;
502 }
503 }
504}
505
506static int betweenclust(edge_t * e)
507{
508 while (ED_to_orig(e))
509 e = ED_to_orig(e);
510 return ND_clust(agtail(e)) != ND_clust(aghead(e));
511}
512
513static void do_ordering_node(graph_t *g, node_t *n, bool outflag) {
514 int i, ne;
515 node_t *u, *v;
516 edge_t *e, *f, *fe;
517 edge_t **sortlist = TE_list;
518
519 if (ND_clust(n))
520 return;
521 if (outflag) {
522 for (i = ne = 0; (e = ND_out(n).list[i]); i++)
523 if (!betweenclust(e))
524 sortlist[ne++] = e;
525 } else {
526 for (i = ne = 0; (e = ND_in(n).list[i]); i++)
527 if (!betweenclust(e))
528 sortlist[ne++] = e;
529 }
530 if (ne <= 1)
531 return;
532 // Write null terminator at end of list. Requires +1 in TE_list allocation.
533 sortlist[ne] = 0;
534 qsort(sortlist, ne, sizeof(sortlist[0]), edgeidcmpf);
535 for (ne = 1; (f = sortlist[ne]); ne++) {
536 e = sortlist[ne - 1];
537 if (outflag) {
538 u = aghead(e);
539 v = aghead(f);
540 } else {
541 u = agtail(e);
542 v = agtail(f);
543 }
544 if (find_flat_edge(u, v))
545 return;
546 fe = new_virtual_edge(u, v, NULL);
548 flat_edge(g, fe);
549 }
550}
551
552static void do_ordering(graph_t *g, bool outflag) {
553 /* Order all nodes in graph */
554 node_t *n;
555
556 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
557 do_ordering_node (g, n, outflag);
558 }
559}
560
562{
563 /* Order nodes which have the "ordered" attribute */
564 node_t *n;
565 const char *ordering;
566
567 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
568 if ((ordering = late_string(n, N_ordering, NULL))) {
569 if (streq(ordering, "out"))
570 do_ordering_node(g, n, true);
571 else if (streq(ordering, "in"))
572 do_ordering_node(g, n, false);
573 else if (ordering[0])
574 agerrorf("ordering '%s' not recognized for node '%s'.\n", ordering, agnameof(n));
575 }
576 }
577}
578
579/* handle case where graph specifies edge ordering
580 * If the graph does not have an ordering attribute, we then
581 * check for nodes having the attribute.
582 * Note that, in this implementation, the value of G_ordering
583 * dominates the value of N_ordering.
584 */
585static void ordered_edges(graph_t * g)
586{
587 char *ordering;
588
589 if (!G_ordering && !N_ordering)
590 return;
591 if ((ordering = late_string(g, G_ordering, NULL))) {
592 if (streq(ordering, "out"))
593 do_ordering(g, true);
594 else if (streq(ordering, "in"))
595 do_ordering(g, false);
596 else if (ordering[0])
597 agerrorf("ordering '%s' not recognized.\n", ordering);
598 }
599 else
600 {
601 graph_t *subg;
602
603 for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) {
604 /* clusters are processed by separate calls to ordered_edges */
605 if (!is_cluster(subg))
606 ordered_edges(subg);
607 }
609 }
610}
611
612static int64_t mincross_clust(graph_t *g) {
613 int c;
614
615 if (expand_cluster(g) != 0) {
616 return -1;
617 }
618 ordered_edges(g);
620 flat_reorder(g);
621 int64_t nc = mincross(g, 2);
622 if (nc < 0) {
623 return nc;
624 }
625
626 for (c = 1; c <= GD_n_cluster(g); c++) {
627 const int64_t mc = mincross_clust(GD_clust(g)[c]);
628 if (mc < 0) {
629 return mc;
630 }
631 nc += mc;
632 }
633
634 save_vlist(g);
635 return nc;
636}
637
638static bool left2right(graph_t *g, node_t *v, node_t *w) {
639 /* CLUSTER indicates orig nodes of clusters, and vnodes of skeletons */
640 if (!ReMincross) {
641 if (ND_clust(v) != ND_clust(w) && ND_clust(v) && ND_clust(w)) {
642 /* the following allows cluster skeletons to be swapped */
643 if (ND_ranktype(v) == CLUSTER && ND_node_type(v) == VIRTUAL)
644 return false;
645 if (ND_ranktype(w) == CLUSTER && ND_node_type(w) == VIRTUAL)
646 return false;
647 return true;
648 }
649 } else {
650 if (ND_clust(v) != ND_clust(w))
651 return true;
652 }
653 adjmatrix_t *const M = GD_rank(g)[ND_rank(v)].flat;
654 if (M == NULL)
655 return false;
656 if (GD_flip(g)) {
657 SWAP(&v, &w);
658 }
659 return matrix_get(M, (size_t)flatindex(v), (size_t)flatindex(w));
660}
661
662static int64_t in_cross(node_t *v, node_t *w) {
663 edge_t **e1, **e2;
664 int inv, t;
665 int64_t cross = 0;
666
667 for (e2 = ND_in(w).list; *e2; e2++) {
668 int cnt = ED_xpenalty(*e2);
669
670 inv = ND_order(agtail(*e2));
671
672 for (e1 = ND_in(v).list; *e1; e1++) {
673 t = ND_order(agtail(*e1)) - inv;
674 if (t > 0 || (t == 0 && ED_tail_port(*e1).p.x > ED_tail_port(*e2).p.x))
675 cross += ED_xpenalty(*e1) * cnt;
676 }
677 }
678 return cross;
679}
680
681static int out_cross(node_t * v, node_t * w)
682{
683 edge_t **e1, **e2;
684 int inv, cross = 0, t;
685
686 for (e2 = ND_out(w).list; *e2; e2++) {
687 int cnt = ED_xpenalty(*e2);
688 inv = ND_order(aghead(*e2));
689
690 for (e1 = ND_out(v).list; *e1; e1++) {
691 t = ND_order(aghead(*e1)) - inv;
692 if (t > 0 || (t == 0 && ED_head_port(*e1).p.x > ED_head_port(*e2).p.x))
693 cross += ED_xpenalty(*e1) * cnt;
694 }
695 }
696 return cross;
697
698}
699
700static void exchange(node_t * v, node_t * w)
701{
702 int vi, wi, r;
703
704 r = ND_rank(v);
705 vi = ND_order(v);
706 wi = ND_order(w);
707 ND_order(v) = wi;
708 GD_rank(Root)[r].v[wi] = v;
709 ND_order(w) = vi;
710 GD_rank(Root)[r].v[vi] = w;
711}
712
713static int64_t transpose_step(graph_t *g, int r, bool reverse) {
714 int i;
715 node_t *v, *w;
716
717 int64_t rv = 0;
718 GD_rank(g)[r].candidate = false;
719 for (i = 0; i < GD_rank(g)[r].n - 1; i++) {
720 v = GD_rank(g)[r].v[i];
721 w = GD_rank(g)[r].v[i + 1];
722 assert(ND_order(v) < ND_order(w));
723 if (left2right(g, v, w))
724 continue;
725 int64_t c0 = 0;
726 int64_t c1 = 0;
727 if (r > 0) {
728 c0 += in_cross(v, w);
729 c1 += in_cross(w, v);
730 }
731 if (GD_rank(g)[r + 1].n > 0) {
732 c0 += out_cross(v, w);
733 c1 += out_cross(w, v);
734 }
735 if (c1 < c0 || (c0 > 0 && reverse && c1 == c0)) {
736 exchange(v, w);
737 rv += c0 - c1;
738 GD_rank(Root)[r].valid = false;
739 GD_rank(g)[r].candidate = true;
740
741 if (r > GD_minrank(g)) {
742 GD_rank(Root)[r - 1].valid = false;
743 GD_rank(g)[r - 1].candidate = true;
744 }
745 if (r < GD_maxrank(g)) {
746 GD_rank(Root)[r + 1].valid = false;
747 GD_rank(g)[r + 1].candidate = true;
748 }
749 }
750 }
751 return rv;
752}
753
754static void transpose(graph_t * g, bool reverse)
755{
756 int r;
757
758 for (r = GD_minrank(g); r <= GD_maxrank(g); r++)
759 GD_rank(g)[r].candidate = true;
760 int64_t delta;
761 do {
762 delta = 0;
763 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
764 if (GD_rank(g)[r].candidate) {
765 delta += transpose_step(g, r, reverse);
766 }
767 }
768 } while (delta >= 1);
769}
770
771static int64_t mincross(graph_t *g, int startpass) {
772 const int endpass = 2;
773 int maxthispass = 0, iter, trying, pass;
774 int64_t cur_cross, best_cross;
775
776 if (startpass > 1) {
777 cur_cross = best_cross = ncross();
778 save_best(g);
779 } else
780 cur_cross = best_cross = INT64_MAX;
781 for (pass = startpass; pass <= endpass; pass++) {
782 if (pass <= 1) {
783 maxthispass = MIN(4, MaxIter);
784 if (g == dot_root(g))
785 if (build_ranks(g, pass) != 0) {
786 return -1;
787 }
788 if (pass == 0)
790 flat_reorder(g);
791
792 if ((cur_cross = ncross()) <= best_cross) {
793 save_best(g);
794 best_cross = cur_cross;
795 }
796 } else {
797 maxthispass = MaxIter;
798 if (cur_cross > best_cross)
799 restore_best(g);
800 cur_cross = best_cross;
801 }
802 trying = 0;
803 for (iter = 0; iter < maxthispass; iter++) {
804 if (Verbose)
805 fprintf(stderr,
806 "mincross: pass %d iter %d trying %d cur_cross %" PRId64 " best_cross %"
807 PRId64 "\n",
808 pass, iter, trying, cur_cross, best_cross);
809 if (trying++ >= MinQuit)
810 break;
811 if (cur_cross == 0)
812 break;
813 mincross_step(g, iter);
814 if ((cur_cross = ncross()) <= best_cross) {
815 save_best(g);
816 if (cur_cross < Convergence * (double)best_cross)
817 trying = 0;
818 best_cross = cur_cross;
819 }
820 }
821 if (cur_cross == 0)
822 break;
823 }
824 if (cur_cross > best_cross)
825 restore_best(g);
826 if (best_cross > 0) {
827 transpose(g, false);
828 best_cross = ncross();
829 }
830
831 return best_cross;
832}
833
834static void restore_best(graph_t * g)
835{
836 node_t *n;
837 int i, r;
838
839 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
840 for (i = 0; i < GD_rank(g)[r].n; i++) {
841 n = GD_rank(g)[r].v[i];
842 ND_order(n) = saveorder(n);
843 }
844 }
845 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
846 GD_rank(Root)[r].valid = false;
847 qsort(GD_rank(g)[r].v, GD_rank(g)[r].n, sizeof(GD_rank(g)[0].v[0]),
849 }
850}
851
852static void save_best(graph_t * g)
853{
854 node_t *n;
855 int i, r;
856 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
857 for (i = 0; i < GD_rank(g)[r].n; i++) {
858 n = GD_rank(g)[r].v[i];
859 saveorder(n) = ND_order(n);
860 }
861 }
862}
863
864/* merges the connected components of g */
865static void merge_components(graph_t * g)
866{
867 node_t *u, *v;
868
869 if (GD_comp(g).size <= 1)
870 return;
871 u = NULL;
872 for (size_t c = 0; c < GD_comp(g).size; c++) {
873 v = GD_comp(g).list[c];
874 if (u)
875 ND_next(u) = v;
876 ND_prev(v) = u;
877 while (ND_next(v)) {
878 v = ND_next(v);
879 }
880 u = v;
881 }
882 GD_comp(g).size = 1;
883 GD_nlist(g) = GD_comp(g).list[0];
886}
887
888/* merge connected components, create globally consistent rank lists */
889static void merge2(graph_t * g)
890{
891 int i, r;
892 node_t *v;
893
894 /* merge the components and rank limits */
896
897 /* install complete ranks */
898 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
899 GD_rank(g)[r].n = GD_rank(g)[r].an;
900 GD_rank(g)[r].v = GD_rank(g)[r].av;
901 for (i = 0; i < GD_rank(g)[r].n; i++) {
902 v = GD_rank(g)[r].v[i];
903 if (v == NULL) {
904 if (Verbose)
905 fprintf(stderr,
906 "merge2: graph %s, rank %d has only %d < %d nodes\n",
907 agnameof(g), r, i, GD_rank(g)[r].n);
908 GD_rank(g)[r].n = i;
909 break;
910 }
911 ND_order(v) = i;
912 }
913 }
914}
915
916static void cleanup2(graph_t *g, int64_t nc) {
917 int i, j, r, c;
918 node_t *v;
919 edge_t *e;
920
921 if (TI_list) {
922 free(TI_list);
923 TI_list = NULL;
924 }
925 if (TE_list) {
926 free(TE_list);
927 TE_list = NULL;
928 }
929 /* fix vlists of clusters */
930 for (c = 1; c <= GD_n_cluster(g); c++)
932
933 /* remove node temporary edges for ordering nodes */
934 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
935 for (i = 0; i < GD_rank(g)[r].n; i++) {
936 v = GD_rank(g)[r].v[i];
937 ND_order(v) = i;
938 if (ND_flat_out(v).list) {
939 for (j = 0; (e = ND_flat_out(v).list[j]); j++)
940 if (ED_edge_type(e) == FLATORDER) {
942 free(e->base.data);
943 free(e);
944 j--;
945 }
946 }
947 }
948 free_matrix(GD_rank(g)[r].flat);
949 }
950 if (Verbose)
951 fprintf(stderr, "mincross %s: %" PRId64 " crossings, %.2f secs.\n",
952 agnameof(g), nc, elapsed_sec());
953}
954
955static node_t *neighbor(node_t * v, int dir)
956{
957 node_t *rv = NULL;
958assert(v);
959 if (dir < 0) {
960 if (ND_order(v) > 0)
961 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) - 1];
962 } else
963 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) + 1];
964assert(rv == 0 || (ND_order(rv)-ND_order(v))*dir > 0);
965 return rv;
966}
967
968static bool is_a_normal_node_of(graph_t *g, node_t *v) {
969 return ND_node_type(v) == NORMAL && agcontains(g, v);
970}
971
973 if (ND_node_type(v) == VIRTUAL
974 && ND_in(v).size == 1 && ND_out(v).size == 1) {
975 edge_t *e = ND_out(v).list[0];
976 while (ED_edge_type(e) != NORMAL)
977 e = ED_to_orig(e);
978 if (agcontains(g, e))
979 return true;
980 }
981 return false;
982}
983
984static bool inside_cluster(graph_t *g, node_t *v) {
985 return is_a_normal_node_of(g, v) || is_a_vnode_of_an_edge_of(g, v);
986}
987
988static node_t *furthestnode(graph_t * g, node_t * v, int dir)
989{
990 node_t *rv = v;
991 for (node_t *u = v; (u = neighbor(u, dir)); ) {
992 if (is_a_normal_node_of(g, u))
993 rv = u;
994 else if (is_a_vnode_of_an_edge_of(g, u))
995 rv = u;
996 }
997 return rv;
998}
999
1001{
1002 int r;
1003
1004 if (GD_rankleader(g))
1005 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1006 GD_rankleader(g)[r] = GD_rank(g)[r].v[0];
1007 }
1008}
1009
1011{
1012 int c;
1013
1014 save_vlist(g);
1015 for (c = 1; c <= GD_n_cluster(g); c++)
1017}
1018
1019
1021{
1022 // fix vlists of sub-clusters
1023 for (int c = 1; c <= GD_n_cluster(g); c++)
1025
1026 if (GD_rankleader(g))
1027 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1028 node_t *const v = GD_rankleader(g)[r];
1029 if (v == NULL) {
1030 continue;
1031 }
1032#ifdef DEBUG
1033 node_in_root_vlist(v);
1034#endif
1035 node_t *const u = furthestnode(g, v, -1);
1036 node_t *const w = furthestnode(g, v, 1);
1037 GD_rankleader(g)[r] = u;
1038#ifdef DEBUG
1039 assert(GD_rank(dot_root(g))[r].v[ND_order(u)] == u);
1040#endif
1041 GD_rank(g)[r].v = GD_rank(dot_root(g))[r].v + ND_order(u);
1042 GD_rank(g)[r].n = ND_order(w) - ND_order(u) + 1;
1043 }
1044}
1045
1046/* The structures in crossing minimization and positioning require
1047 * that clusters have some node on each rank. This function recursively
1048 * guarantees this property. It takes into account nodes and edges in
1049 * a cluster, the latter causing dummy nodes for intervening ranks.
1050 * For any rank without node, we create a real node of small size. This
1051 * is stored in the subgraph sg, for easy removal later.
1052 *
1053 * I believe it is not necessary to do this for the root graph, as these
1054 * are laid out one component at a time and these will necessarily have a
1055 * node on each rank from source to sink levels.
1056 */
1058 int i, c;
1059 Agedge_t* e;
1060 Agnode_t* n;
1061
1062 for (c = 1; c <= GD_n_cluster(g); c++)
1063 sg = realFillRanks(GD_clust(g)[c], ranks, sg);
1064
1065 if (dot_root(g) == g)
1066 return sg;
1067 bitarray_clear(ranks);
1068 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
1069 bitarray_set(ranks, ND_rank(n), true);
1070 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
1071 for (i = ND_rank(n)+1; i <= ND_rank(aghead(e)); i++)
1072 bitarray_set(ranks, i, true);
1073 }
1074 }
1075 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1076 if (!bitarray_get(*ranks, i)) {
1077 if (!sg) {
1078 sg = agsubg (dot_root(g), "_new_rank", 1);
1079 }
1080 n = agnode (sg, NULL, 1);
1081 agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true);
1082 ND_rank(n) = i;
1083 ND_lw(n) = ND_rw(n) = 0.5;
1084 ND_ht(n) = 1;
1085 ND_UF_size(n) = 1;
1086 alloc_elist(4, ND_in(n));
1087 alloc_elist(4, ND_out(n));
1088 agsubnode (g, n, 1);
1089 }
1090 }
1091 return sg;
1092}
1093
1094static void
1096{
1097 int rnks_sz = GD_maxrank(g) + 2;
1098 bitarray_t rnks = bitarray_new(rnks_sz);
1099 realFillRanks(g, &rnks, NULL);
1100 bitarray_reset(&rnks);
1101}
1102
1103static void init_mincross(graph_t * g)
1104{
1105 int size;
1106
1107 if (Verbose)
1108 start_timer();
1109
1110 ReMincross = false;
1111 Root = g;
1112 /* alloc +1 for the null terminator usage in do_ordering() */
1113 size = agnedges(dot_root(g)) + 1;
1114 TE_list = gv_calloc(size, sizeof(edge_t*));
1115 TI_list = gv_calloc(size, sizeof(int));
1117 if (GD_flags(g) & NEW_RANK)
1118 fillRanks (g);
1119 class2(g);
1120 decompose(g, 1);
1121 allocate_ranks(g);
1122 ordered_edges(g);
1125}
1126
1127static void flat_rev(Agraph_t * g, Agedge_t * e)
1128{
1129 int j;
1130 Agedge_t *rev;
1131
1132 if (!ND_flat_out(aghead(e)).list)
1133 rev = NULL;
1134 else
1135 for (j = 0; (rev = ND_flat_out(aghead(e)).list[j]); j++)
1136 if (aghead(rev) == agtail(e))
1137 break;
1138 if (rev) {
1139 merge_oneway(e, rev);
1140 if (ED_edge_type(rev) == FLATORDER && ED_to_orig(rev) == 0)
1141 ED_to_orig(rev) = e;
1143 } else {
1144 rev = new_virtual_edge(aghead(e), agtail(e), e);
1145 if (ED_edge_type(e) == FLATORDER)
1146 ED_edge_type(rev) = FLATORDER;
1147 else
1148 ED_edge_type(rev) = REVERSED;
1149 ED_label(rev) = ED_label(e);
1150 flat_edge(g, rev);
1151 }
1152}
1153
1154static void flat_search(graph_t * g, node_t * v)
1155{
1156 int i;
1157 bool hascl;
1158 edge_t *e;
1159 adjmatrix_t *M = GD_rank(g)[ND_rank(v)].flat;
1160
1161 ND_mark(v) = true;
1162 ND_onstack(v) = true;
1163 hascl = GD_n_cluster(dot_root(g)) > 0;
1164 if (ND_flat_out(v).list)
1165 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1166 if (hascl && !(agcontains(g, agtail(e)) && agcontains(g, aghead(e))))
1167 continue;
1168 if (ED_weight(e) == 0)
1169 continue;
1170 if (ND_onstack(aghead(e))) {
1171 matrix_set(M, (size_t)flatindex(aghead(e)), (size_t)flatindex(agtail(e)));
1173 i--;
1174 if (ED_edge_type(e) == FLATORDER)
1175 continue;
1176 flat_rev(g, e);
1177 } else {
1178 matrix_set(M, (size_t)flatindex(agtail(e)), (size_t)flatindex(aghead(e)));
1179 if (!ND_mark(aghead(e)))
1180 flat_search(g, aghead(e));
1181 }
1182 }
1183 ND_onstack(v) = false;
1184}
1185
1187{
1188 int i, r;
1189 node_t *v;
1190
1191 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1192 bool flat = false;
1193 for (i = 0; i < GD_rank(g)[r].n; i++) {
1194 v = GD_rank(g)[r].v[i];
1195 ND_mark(v) = false;
1196 ND_onstack(v) = false;
1197 ND_low(v) = i;
1198 if (ND_flat_out(v).size > 0 && !flat) {
1199 GD_rank(g)[r].flat =
1200 new_matrix((size_t)GD_rank(g)[r].n, (size_t)GD_rank(g)[r].n);
1201 flat = true;
1202 }
1203 }
1204 if (flat) {
1205 for (i = 0; i < GD_rank(g)[r].n; i++) {
1206 v = GD_rank(g)[r].v[i];
1207 if (!ND_mark(v))
1208 flat_search(g, v);
1209 }
1210 }
1211 }
1212}
1213
1214/* Allocate rank structure, determining number of nodes per rank.
1215 * Note that no nodes are put into the structure yet.
1216 */
1218{
1219 int r, low, high;
1220 node_t *n;
1221 edge_t *e;
1222
1223 int *cn = gv_calloc(GD_maxrank(g) + 2, sizeof(int)); // must be 0 based, not GD_minrank
1224 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
1225 cn[ND_rank(n)]++;
1226 for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
1227 low = ND_rank(agtail(e));
1228 high = ND_rank(aghead(e));
1229 if (low > high) {
1230 SWAP(&low, &high);
1231 }
1232 for (r = low + 1; r < high; r++)
1233 cn[r]++;
1234 }
1235 }
1236 GD_rank(g) = gv_calloc(GD_maxrank(g) + 2, sizeof(rank_t));
1237 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1238 GD_rank(g)[r].an = GD_rank(g)[r].n = cn[r] + 1;
1239 GD_rank(g)[r].av = GD_rank(g)[r].v = gv_calloc(cn[r] + 1, sizeof(node_t*));
1240 }
1241 free(cn);
1242}
1243
1244/* install a node at the current right end of its rank */
1246 int i, r;
1247
1248 r = ND_rank(n);
1249 i = GD_rank(g)[r].n;
1250 if (GD_rank(g)[r].an <= 0) {
1251 agerrorf("install_in_rank, line %d: %s %s rank %d i = %d an = 0\n",
1252 __LINE__, agnameof(g), agnameof(n), r, i);
1253 return -1;
1254 }
1255
1256 GD_rank(g)[r].v[i] = n;
1257 ND_order(n) = i;
1258 GD_rank(g)[r].n++;
1259 assert(GD_rank(g)[r].n <= GD_rank(g)[r].an);
1260#ifdef DEBUG
1261 {
1262 node_t *v;
1263
1264 for (v = GD_nlist(g); v; v = ND_next(v))
1265 if (v == n)
1266 break;
1267 assert(v != NULL);
1268 }
1269#endif
1270 if (ND_order(n) > GD_rank(Root)[r].an) {
1271 agerrorf("install_in_rank, line %d: ND_order(%s) [%d] > GD_rank(Root)[%d].an [%d]\n",
1272 __LINE__, agnameof(n), ND_order(n), r, GD_rank(Root)[r].an);
1273 return -1;
1274 }
1275 if (r < GD_minrank(g) || r > GD_maxrank(g)) {
1276 agerrorf("install_in_rank, line %d: rank %d not in rank range [%d,%d]\n",
1277 __LINE__, r, GD_minrank(g), GD_maxrank(g));
1278 return -1;
1279 }
1280 if (GD_rank(g)[r].v + ND_order(n) >
1281 GD_rank(g)[r].av + GD_rank(Root)[r].an) {
1282 agerrorf("install_in_rank, line %d: GD_rank(g)[%d].v + ND_order(%s) [%d] > GD_rank(g)[%d].av + GD_rank(Root)[%d].an [%d]\n",
1283 __LINE__, r, agnameof(n),ND_order(n), r, r, GD_rank(Root)[r].an);
1284 return -1;
1285 }
1286 return 0;
1287}
1288
1289/* install nodes in ranks. the initial ordering ensure that series-parallel
1290 * graphs such as trees are drawn with no crossings. it tries searching
1291 * in- and out-edges and takes the better of the two initial orderings.
1292 */
1293int build_ranks(graph_t *g, int pass) {
1294 int i, j;
1295 node_t *n, *ns;
1296 edge_t **otheredges;
1297 node_queue_t q = {0};
1298 for (n = GD_nlist(g); n; n = ND_next(n))
1299 MARK(n) = false;
1300
1301#ifdef DEBUG
1302 {
1303 edge_t *e;
1304 for (n = GD_nlist(g); n; n = ND_next(n)) {
1305 for (i = 0; (e = ND_out(n).list[i]); i++)
1306 assert(!MARK(aghead(e)));
1307 for (i = 0; (e = ND_in(n).list[i]); i++)
1308 assert(!MARK(agtail(e)));
1309 }
1310 }
1311#endif
1312
1313 for (i = GD_minrank(g); i <= GD_maxrank(g); i++)
1314 GD_rank(g)[i].n = 0;
1315
1316 const bool walkbackwards = g != agroot(g); // if this is a cluster, need to
1317 // walk GD_nlist backward to
1318 // preserve input node order
1319 if (walkbackwards) {
1320 for (ns = GD_nlist(g); ND_next(ns); ns = ND_next(ns)) {
1321 ;
1322 }
1323 } else {
1324 ns = GD_nlist(g);
1325 }
1326 for (n = ns; n; n = walkbackwards ? ND_prev(n) : ND_next(n)) {
1327 otheredges = pass == 0 ? ND_in(n).list : ND_out(n).list;
1328 if (otheredges[0] != NULL)
1329 continue;
1330 if (!MARK(n)) {
1331 MARK(n) = true;
1332 LIST_PUSH_BACK(&q, n);
1333 while (!LIST_IS_EMPTY(&q)) {
1334 node_t *n0 = LIST_POP_FRONT(&q);
1335 if (ND_ranktype(n0) != CLUSTER) {
1336 if (install_in_rank(g, n0) != 0) {
1337 LIST_FREE(&q);
1338 return -1;
1339 }
1340 enqueue_neighbors(&q, n0, pass);
1341 } else {
1342 const int rc = install_cluster(g, n0, pass, &q);
1343 if (rc != 0) {
1344 LIST_FREE(&q);
1345 return rc;
1346 }
1347 }
1348 }
1349 }
1350 }
1351 assert(LIST_IS_EMPTY(&q));
1352 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1353 GD_rank(Root)[i].valid = false;
1354 if (GD_flip(g) && GD_rank(g)[i].n > 0) {
1355 node_t **vlist = GD_rank(g)[i].v;
1356 int num_nodes_1 = GD_rank(g)[i].n - 1;
1357 int half_num_nodes_1 = num_nodes_1 / 2;
1358 for (j = 0; j <= half_num_nodes_1; j++)
1359 exchange(vlist[j], vlist[num_nodes_1 - j]);
1360 }
1361 }
1362
1363 if (g == dot_root(g) && ncross() > 0)
1364 transpose(g, false);
1365 LIST_FREE(&q);
1366 return 0;
1367}
1368
1369void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass) {
1370 edge_t *e;
1371
1372 if (pass == 0) {
1373 for (size_t i = 0; i < ND_out(n0).size; i++) {
1374 e = ND_out(n0).list[i];
1375 if (!MARK(aghead(e))) {
1376 MARK(aghead(e)) = true;
1377 LIST_PUSH_BACK(q, aghead(e));
1378 }
1379 }
1380 } else {
1381 for (size_t i = 0; i < ND_in(n0).size; i++) {
1382 e = ND_in(n0).list[i];
1383 if (!MARK(agtail(e))) {
1384 MARK(agtail(e)) = true;
1385 LIST_PUSH_BACK(q, agtail(e));
1386 }
1387 }
1388 }
1389}
1390
1392 if (ED_weight(e) == 0)
1393 return false;
1394 if (!inside_cluster(g, agtail(e)))
1395 return false;
1396 if (!inside_cluster(g, aghead(e)))
1397 return false;
1398 return true;
1399}
1400
1401typedef LIST(node_t *) nodes_t;
1402
1403/* construct nodes reachable from 'here' in post-order.
1404* This is the same as doing a topological sort in reverse order.
1405*/
1406static void postorder(graph_t *g, node_t *v, nodes_t *list, int r) {
1407 edge_t *e;
1408 int i;
1409
1410 MARK(v) = true;
1411 if (ND_flat_out(v).size > 0) {
1412 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1413 if (!constraining_flat_edge(g, e)) continue;
1414 if (!MARK(aghead(e)))
1415 postorder(g, aghead(e), list, r);
1416 }
1417 }
1418 assert(ND_rank(v) == r);
1419 LIST_APPEND(list, v);
1420}
1421
1422static void flat_reorder(graph_t * g)
1423{
1424 int i, r, local_in_cnt, local_out_cnt, base_order;
1425 node_t *v;
1426 nodes_t temprank = {0};
1427 edge_t *flat_e, *e;
1428
1429 if (!GD_has_flat_edges(g))
1430 return;
1431 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1432 if (GD_rank(g)[r].n == 0) continue;
1433 base_order = ND_order(GD_rank(g)[r].v[0]);
1434 for (i = 0; i < GD_rank(g)[r].n; i++)
1435 MARK(GD_rank(g)[r].v[i]) = false;
1436 LIST_CLEAR(&temprank);
1437
1438 /* construct reverse topological sort order in temprank */
1439 for (i = 0; i < GD_rank(g)[r].n; i++) {
1440 if (GD_flip(g)) v = GD_rank(g)[r].v[i];
1441 else v = GD_rank(g)[r].v[GD_rank(g)[r].n - i - 1];
1442
1443 local_in_cnt = local_out_cnt = 0;
1444 for (size_t j = 0; j < ND_flat_in(v).size; j++) {
1445 flat_e = ND_flat_in(v).list[j];
1446 if (constraining_flat_edge(g, flat_e)) local_in_cnt++;
1447 }
1448 for (size_t j = 0; j < ND_flat_out(v).size; j++) {
1449 flat_e = ND_flat_out(v).list[j];
1450 if (constraining_flat_edge(g, flat_e)) local_out_cnt++;
1451 }
1452 if (local_in_cnt == 0 && local_out_cnt == 0)
1453 LIST_APPEND(&temprank, v);
1454 else {
1455 if (!MARK(v) && local_in_cnt == 0) {
1456 postorder(g, v, &temprank, r);
1457 }
1458 }
1459 }
1460
1461 if (!LIST_IS_EMPTY(&temprank)) {
1462 if (!GD_flip(g)) {
1463 LIST_REVERSE(&temprank);
1464 }
1465 for (i = 0; i < GD_rank(g)[r].n; i++) {
1466 v = GD_rank(g)[r].v[i] = LIST_GET(&temprank, (size_t)i);
1467 ND_order(v) = i + base_order;
1468 }
1469
1470 /* nonconstraint flat edges must be made LR */
1471 for (i = 0; i < GD_rank(g)[r].n; i++) {
1472 v = GD_rank(g)[r].v[i];
1473 if (ND_flat_out(v).list) {
1474 for (size_t j = 0; (e = ND_flat_out(v).list[j]); j++) {
1475 if ((!GD_flip(g) && ND_order(aghead(e)) < ND_order(agtail(e))) ||
1476 (GD_flip(g) && ND_order(aghead(e)) > ND_order(agtail(e)))) {
1477 assert(!constraining_flat_edge(g, e));
1479 j--;
1480 flat_rev(g, e);
1481 }
1482 }
1483 }
1484 }
1485 /* postprocess to restore intended order */
1486 }
1487 /* else do no harm! */
1488 GD_rank(Root)[r].valid = false;
1489 }
1490 LIST_FREE(&temprank);
1491}
1492
1493static void reorder(graph_t * g, int r, bool reverse, bool hasfixed)
1494{
1495 int changed = 0, nelt;
1496 node_t **vlist = GD_rank(g)[r].v;
1497 node_t **lp, **rp, **ep = vlist + GD_rank(g)[r].n;
1498
1499 for (nelt = GD_rank(g)[r].n - 1; nelt >= 0; nelt--) {
1500 lp = vlist;
1501 while (lp < ep) {
1502 /* find leftmost node that can be compared */
1503 while (lp < ep && ND_mval(*lp) < 0)
1504 lp++;
1505 if (lp >= ep)
1506 break;
1507 /* find the node that can be compared */
1508 bool sawclust = false;
1509 bool muststay = false;
1510 for (rp = lp + 1; rp < ep; rp++) {
1511 if (sawclust && ND_clust(*rp))
1512 continue; /* ### */
1513 if (left2right(g, *lp, *rp)) {
1514 muststay = true;
1515 break;
1516 }
1517 if (ND_mval(*rp) >= 0)
1518 break;
1519 if (ND_clust(*rp))
1520 sawclust = true; /* ### */
1521 }
1522 if (rp >= ep)
1523 break;
1524 if (!muststay) {
1525 const double p1 = ND_mval(*lp);
1526 const double p2 = ND_mval(*rp);
1527 if (p1 > p2 || (p1 >= p2 && reverse)) {
1528 exchange(*lp, *rp);
1529 changed++;
1530 }
1531 }
1532 lp = rp;
1533 }
1534 if (!hasfixed && !reverse)
1535 ep--;
1536 }
1537
1538 if (changed) {
1539 GD_rank(Root)[r].valid = false;
1540 if (r > 0)
1541 GD_rank(Root)[r - 1].valid = false;
1542 }
1543}
1544
1545static void mincross_step(graph_t * g, int pass)
1546{
1547 int r, other, first, last, dir;
1548
1549 bool reverse = pass % 4 < 2;
1550
1551 if (pass % 2 == 0) { /* down pass */
1552 first = GD_minrank(g) + 1;
1553 if (GD_minrank(g) > GD_minrank(Root))
1554 first--;
1555 last = GD_maxrank(g);
1556 dir = 1;
1557 } else { /* up pass */
1558 first = GD_maxrank(g) - 1;
1559 last = GD_minrank(g);
1560 if (GD_maxrank(g) < GD_maxrank(Root))
1561 first++;
1562 dir = -1;
1563 }
1564
1565 for (r = first; r != last + dir; r += dir) {
1566 other = r - dir;
1567 bool hasfixed = medians(g, r, other);
1568 reorder(g, r, reverse, hasfixed);
1569 }
1570 transpose(g, !reverse);
1571}
1572
1573static int local_cross(elist l, int dir)
1574{
1575 int i, j;
1576 int cross = 0;
1577 edge_t *e, *f;
1578 bool is_out = dir > 0;
1579 for (i = 0; (e = l.list[i]); i++) {
1580 if (is_out)
1581 for (j = i + 1; (f = l.list[j]); j++) {
1582 if ((ND_order(aghead(f)) - ND_order(aghead(e)))
1583 * (ED_tail_port(f).p.x - ED_tail_port(e).p.x) < 0)
1584 cross += ED_xpenalty(e) * ED_xpenalty(f);
1585 } else
1586 for (j = i + 1; (f = l.list[j]); j++) {
1587 if ((ND_order(agtail(f)) - ND_order(agtail(e)))
1588 * (ED_head_port(f).p.x - ED_head_port(e).p.x) < 0)
1589 cross += ED_xpenalty(e) * ED_xpenalty(f);
1590 }
1591 }
1592 return cross;
1593}
1594
1595static int64_t rcross(graph_t *g, int r) {
1596 int top, bot, max, i, k;
1597 node_t **rtop, *v;
1598
1599 int64_t cross = 0;
1600 max = 0;
1601 rtop = GD_rank(g)[r].v;
1602
1603 int *Count = gv_calloc(GD_rank(Root)[r + 1].n + 1, sizeof(int));
1604
1605 for (top = 0; top < GD_rank(g)[r].n; top++) {
1606 edge_t *e;
1607 if (max > 0) {
1608 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1609 for (k = ND_order(aghead(e)) + 1; k <= max; k++)
1610 cross += Count[k] * ED_xpenalty(e);
1611 }
1612 }
1613 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1614 int inv = ND_order(aghead(e));
1615 if (inv > max)
1616 max = inv;
1617 Count[inv] += ED_xpenalty(e);
1618 }
1619 }
1620 for (top = 0; top < GD_rank(g)[r].n; top++) {
1621 v = GD_rank(g)[r].v[top];
1622 if (ND_has_port(v))
1623 cross += local_cross(ND_out(v), 1);
1624 }
1625 for (bot = 0; bot < GD_rank(g)[r + 1].n; bot++) {
1626 v = GD_rank(g)[r + 1].v[bot];
1627 if (ND_has_port(v))
1628 cross += local_cross(ND_in(v), -1);
1629 }
1630 free(Count);
1631 return cross;
1632}
1633
1634static int64_t ncross(void) {
1635 int r;
1636
1637 graph_t *g = Root;
1638 int64_t count = 0;
1639 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
1640 if (GD_rank(g)[r].valid)
1641 count += GD_rank(g)[r].cache_nc;
1642 else {
1643 const int64_t nc = GD_rank(g)[r].cache_nc = rcross(g, r);
1644 count += nc;
1645 GD_rank(g)[r].valid = true;
1646 }
1647 }
1648 return count;
1649}
1650
1651static int ordercmpf(const void *x, const void *y) {
1652 const int *i0 = x;
1653 const int *i1 = y;
1654 if (*i0 < *i1) {
1655 return -1;
1656 }
1657 if (*i0 > *i1) {
1658 return 1;
1659 }
1660 return 0;
1661}
1662
1663/* Calculate a mval for nodes with no in or out non-flat edges.
1664 * Assume (ND_out(n).size == 0) && (ND_in(n).size == 0)
1665 * Find flat edge a->n where a has the largest order and set
1666 * n.mval = a.mval+1, assuming a.mval is defined (>=0).
1667 * If there are no flat in edges, find flat edge n->a where a
1668 * has the smallest order and set * n.mval = a.mval-1, assuming
1669 * a.mval is > 0.
1670 * Return true if n.mval is left -1, indicating a fixed node for sorting.
1671 */
1672static bool flat_mval(node_t * n)
1673{
1674 int i;
1675 edge_t *e, **fl;
1676 node_t *nn;
1677
1678 if (ND_flat_in(n).size > 0) {
1679 fl = ND_flat_in(n).list;
1680 nn = agtail(fl[0]);
1681 for (i = 1; (e = fl[i]); i++)
1682 if (ND_order(agtail(e)) > ND_order(nn))
1683 nn = agtail(e);
1684 if (ND_mval(nn) >= 0) {
1685 ND_mval(n) = ND_mval(nn) + 1;
1686 return false;
1687 }
1688 } else if (ND_flat_out(n).size > 0) {
1689 fl = ND_flat_out(n).list;
1690 nn = aghead(fl[0]);
1691 for (i = 1; (e = fl[i]); i++)
1692 if (ND_order(aghead(e)) < ND_order(nn))
1693 nn = aghead(e);
1694 if (ND_mval(nn) > 0) {
1695 ND_mval(n) = ND_mval(nn) - 1;
1696 return false;
1697 }
1698 }
1699 return true;
1700}
1701
1702#define VAL(node,port) (MC_SCALE * ND_order(node) + (port).order)
1703
1704static bool medians(graph_t * g, int r0, int r1)
1705{
1706 int i, j0, lspan, rspan, *list;
1707 node_t *n, **v;
1708 edge_t *e;
1709 bool hasfixed = false;
1710
1711 list = TI_list;
1712 v = GD_rank(g)[r0].v;
1713 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1714 n = v[i];
1715 size_t j = 0;
1716 if (r1 > r0)
1717 for (j0 = 0; (e = ND_out(n).list[j0]); j0++) {
1718 if (ED_xpenalty(e) > 0)
1719 list[j++] = VAL(aghead(e), ED_head_port(e));
1720 } else
1721 for (j0 = 0; (e = ND_in(n).list[j0]); j0++) {
1722 if (ED_xpenalty(e) > 0)
1723 list[j++] = VAL(agtail(e), ED_tail_port(e));
1724 }
1725 switch (j) {
1726 case 0:
1727 ND_mval(n) = -1;
1728 break;
1729 case 1:
1730 ND_mval(n) = list[0];
1731 break;
1732 case 2:
1733 ND_mval(n) = (list[0] + list[1]) / 2;
1734 break;
1735 default:
1736 qsort(list, j, sizeof(int), ordercmpf);
1737 if (j % 2)
1738 ND_mval(n) = list[j / 2];
1739 else {
1740 /* weighted median */
1741 size_t rm = j / 2;
1742 size_t lm = rm - 1;
1743 rspan = list[j - 1] - list[rm];
1744 lspan = list[lm] - list[0];
1745 if (lspan == rspan)
1746 ND_mval(n) = (list[lm] + list[rm]) / 2;
1747 else {
1748 double w = list[lm] * (double)rspan + list[rm] * (double)lspan;
1749 ND_mval(n) = w / (lspan + rspan);
1750 }
1751 }
1752 }
1753 }
1754 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1755 n = v[i];
1756 if (ND_out(n).size == 0 && ND_in(n).size == 0)
1757 hasfixed |= flat_mval(n);
1758 }
1759 return hasfixed;
1760}
1761
1762static int nodeposcmpf(const void *x, const void *y) {
1763// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1764// as the later usage is const. We need the cast because the macros use
1765// non-const pointers for genericity.
1766#ifdef __GNUC__
1767#pragma GCC diagnostic push
1768#pragma GCC diagnostic ignored "-Wcast-qual"
1769#endif
1770 node_t **n0 = (node_t **)x;
1771 node_t **n1 = (node_t **)y;
1772#ifdef __GNUC__
1773#pragma GCC diagnostic pop
1774#endif
1775 if (ND_order(*n0) < ND_order(*n1)) {
1776 return -1;
1777 }
1778 if (ND_order(*n0) > ND_order(*n1)) {
1779 return 1;
1780 }
1781 return 0;
1782}
1783
1784static int edgeidcmpf(const void *x, const void *y) {
1785// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1786// as the later usage is const. We need the cast because the macros use
1787// non-const pointers for genericity.
1788#ifdef __GNUC__
1789#pragma GCC diagnostic push
1790#pragma GCC diagnostic ignored "-Wcast-qual"
1791#endif
1792 edge_t **e0 = (edge_t **)x;
1793 edge_t **e1 = (edge_t **)y;
1794#ifdef __GNUC__
1795#pragma GCC diagnostic pop
1796#endif
1797 if (AGSEQ(*e0) < AGSEQ(*e1)) {
1798 return -1;
1799 }
1800 if (AGSEQ(*e0) > AGSEQ(*e1)) {
1801 return 1;
1802 }
1803 return 0;
1804}
1805
1806/* following code deals with weights of edges of "virtual" nodes */
1807#define ORDINARY 0
1808#define SINGLETON 1
1809#define VIRTUALNODE 2
1810#define NTYPES 3
1811
1812#define C_EE 1
1813#define C_VS 2
1814#define C_SS 2
1815#define C_VV 4
1816
1817static int table[NTYPES][NTYPES] = {
1818 /* ordinary */ {C_EE, C_EE, C_EE},
1819 /* singleton */ {C_EE, C_SS, C_VS},
1820 /* virtual */ {C_EE, C_VS, C_VV}
1821};
1822
1823static int endpoint_class(node_t * n)
1824{
1825 if (ND_node_type(n) == VIRTUAL)
1826 return VIRTUALNODE;
1827 if (ND_weight_class(n) <= 1)
1828 return SINGLETON;
1829 return ORDINARY;
1830}
1831
1833{
1834 int t;
1836
1837 /* check whether the upcoming computation will overflow */
1838 assert(t >= 0);
1839 if (INT_MAX / t < ED_weight(e)) {
1840 agerrorf("overflow when calculating virtual weight of edge\n");
1841 graphviz_exit(EXIT_FAILURE);
1842 }
1843
1844 ED_weight(e) *= t;
1845}
1846
1847#ifdef DEBUG
1848void check_rs(graph_t * g, int null_ok)
1849{
1850 int i, r;
1851 node_t *v, *prev;
1852
1853 fprintf(stderr, "\n\n%s:\n", agnameof(g));
1854 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1855 fprintf(stderr, "%d: ", r);
1856 prev = NULL;
1857 for (i = 0; i < GD_rank(g)[r].n; i++) {
1858 v = GD_rank(g)[r].v[i];
1859 if (v == NULL) {
1860 fprintf(stderr, "NULL\t");
1861 if (!null_ok)
1862 abort();
1863 } else {
1864 fprintf(stderr, "%s(%f)\t", agnameof(v), ND_mval(v));
1865 assert(ND_rank(v) == r);
1866 assert(v != prev);
1867 prev = v;
1868 }
1869 }
1870 fprintf(stderr, "\n");
1871 }
1872}
1873
1874void check_order(void)
1875{
1876 int i, r;
1877 node_t *v;
1878 graph_t *g = Root;
1879
1880 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1881 assert(GD_rank(g)[r].v[GD_rank(g)[r].n] == NULL);
1882 for (i = 0; (v = GD_rank(g)[r].v[i]); i++) {
1883 assert(ND_rank(v) == r);
1884 assert(ND_order(v) == i);
1885 }
1886 }
1887}
1888#endif
1889
1891{
1892 char *p;
1893 double f;
1894
1895 /* set default values */
1896 MinQuit = 8;
1897 MaxIter = 24;
1898
1899 p = agget(g, "mclimit");
1900 if (p && (f = atof(p)) > 0.0) {
1901 MinQuit = MAX(1, scale_clamp(MinQuit, f));
1902 MaxIter = MAX(1, scale_clamp(MaxIter, f));
1903 }
1904}
1905
1906#ifdef DEBUG
1907void check_exchange(node_t * v, node_t * w)
1908{
1909 int i, r;
1910 node_t *u;
1911
1912 if (ND_clust(v) == NULL && ND_clust(w) == NULL)
1913 return;
1914 assert(ND_clust(v) == NULL || ND_clust(w) == NULL);
1915 assert(ND_rank(v) == ND_rank(w));
1916 assert(ND_order(v) < ND_order(w));
1917 r = ND_rank(v);
1918
1919 for (i = ND_order(v) + 1; i < ND_order(w); i++) {
1920 u = GD_rank(dot_root(v))[r].v[i];
1921 if (ND_clust(u))
1922 abort();
1923 }
1924}
1925
1926void check_vlists(graph_t * g)
1927{
1928 int c, i, j, r;
1929 node_t *u;
1930
1931 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1932 for (i = 0; i < GD_rank(g)[r].n; i++) {
1933 u = GD_rank(g)[r].v[i];
1934 j = ND_order(u);
1935 assert(GD_rank(Root)[r].v[j] == u);
1936 }
1937 if (GD_rankleader(g)) {
1938 u = GD_rankleader(g)[r];
1939 j = ND_order(u);
1940 assert(GD_rank(Root)[r].v[j] == u);
1941 }
1942 }
1943 for (c = 1; c <= GD_n_cluster(g); c++)
1944 check_vlists(GD_clust(g)[c]);
1945}
1946
1947void node_in_root_vlist(node_t * n)
1948{
1949 node_t **vptr;
1950
1951 for (vptr = GD_rank(Root)[ND_rank(n)].v; *vptr; vptr++)
1952 if (*vptr == n)
1953 break;
1954 if (*vptr == 0)
1955 abort();
1956}
1957#endif /* DEBUG code */
static agxbuf last
last message
Definition agerror.c:29
Memory allocation wrappers that exit on failure.
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
static void * gv_alloc(size_t size)
Definition alloc.h:47
#define MIN(a, b)
Definition arith.h:28
#define MAX(a, b)
Definition arith.h:33
API for compacted arrays of booleans.
static bitarray_t bitarray_new(size_t size_bits)
create an array of the given element length
Definition bitarray.h:47
static void bitarray_clear(bitarray_t *self)
clear all bits in a bit array
Definition bitarray.h:99
static bool bitarray_get(bitarray_t self, size_t index)
get the value of the given element
Definition bitarray.h:65
static void bitarray_set(bitarray_t *self, size_t index, bool value)
set or clear the value of the given element
Definition bitarray.h:80
static void bitarray_reset(bitarray_t *self)
free underlying resources and leave a bit array empty
Definition bitarray.h:114
abstract graph C library, Cgraph API
void class2(graph_t *g)
Definition class2.c:153
bool mapbool(const char *p)
Definition utils.c:339
char * late_string(void *obj, attrsym_t *attr, char *defaultValue)
Definition utils.c:81
#define NORMAL
Definition const.h:24
#define FLATORDER
Definition const.h:28
#define NEW_RANK
Definition const.h:243
#define VIRTUAL
Definition const.h:25
#define CLUSTER
Definition const.h:40
#define REVERSED
Definition const.h:27
void decompose(graph_t *g, int pass)
Definition decomp.c:106
Agraph_t * dot_root(void *p)
Definition dotinit.c:513
bool is_cluster(Agraph_t *)
Definition rank.c:530
void flat_edge(Agraph_t *, Agedge_t *)
Definition fastgr.c:213
void merge_oneway(Agedge_t *, Agedge_t *)
Definition fastgr.c:287
Agedge_t * new_virtual_edge(Agnode_t *, Agnode_t *, Agedge_t *)
Definition fastgr.c:129
Agedge_t * find_flat_edge(Agnode_t *, Agnode_t *)
Definition fastgr.c:54
void delete_flat_edge(Agedge_t *)
Definition fastgr.c:220
static NORETURN void graphviz_exit(int status)
Definition exit.h:23
int MaxIter
Definition globals.h:61
Agsym_t * G_ordering
Definition globals.h:71
Agsym_t * N_ordering
Definition globals.h:77
static bool Verbose
Definition gml2gv.c:24
void free(void *)
node NULL
Definition grammar.y:181
static int cnt(Dict_t *d, Dtlink_t **set)
Definition graph.c:196
int agnedges(Agraph_t *g)
Definition graph.c:161
int agdegree(Agraph_t *g, Agnode_t *n, int in, int out)
Definition graph.c:223
int agnnodes(Agraph_t *g)
Definition graph.c:155
char * agget(void *obj, char *name)
Definition attr.c:448
#define ED_to_orig(e)
Definition types.h:598
Agedge_t * agedge(Agraph_t *g, Agnode_t *t, Agnode_t *h, char *name, int createflag)
Definition edge.c:253
int agdeledge(Agraph_t *g, Agedge_t *arg_e)
Definition edge.c:327
Agedge_t * agnxtin(Agraph_t *g, Agedge_t *e)
Definition edge.c:71
#define ED_xpenalty(e)
Definition types.h:601
Agedge_t * agfstout(Agraph_t *g, Agnode_t *n)
Definition edge.c:26
#define agtail(e)
Definition cgraph.h:977
#define ED_edge_type(e)
Definition types.h:582
#define ED_weight(e)
Definition types.h:603
#define aghead(e)
Definition cgraph.h:978
Agedge_t * agnxtout(Agraph_t *g, Agedge_t *e)
Definition edge.c:41
#define ED_head_port(e)
Definition types.h:588
Agedge_t * agfstin(Agraph_t *g, Agnode_t *n)
Definition edge.c:57
#define ED_label(e)
Definition types.h:589
#define ED_tail_port(e)
Definition types.h:597
void agwarningf(const char *fmt,...)
Definition agerror.c:173
void agerrorf(const char *fmt,...)
Definition agerror.c:165
#define GD_minrank(g)
Definition types.h:384
#define GD_maxrank(g)
Definition types.h:382
#define GD_clust(g)
Definition types.h:360
int agclose(Agraph_t *g)
deletes a graph, freeing its associated storage
Definition graph.c:95
#define GD_flags(g)
Definition types.h:365
#define GD_rank(g)
Definition types.h:395
#define GD_has_flat_edges(g)
Definition types.h:370
#define GD_nlist(g)
Definition types.h:393
Agdesc_t Agstrictdirected
strict directed. A strict graph cannot have multi-edges or self-arcs.
Definition graph.c:271
#define GD_n_cluster(g)
Definition types.h:389
Agraph_t * agopen(char *name, Agdesc_t desc, Agdisc_t *disc)
creates a new graph with the given name and kind
Definition graph.c:42
#define GD_comp(g)
Definition types.h:362
#define GD_flip(g)
Definition types.h:378
#define GD_rankleader(g)
Definition types.h:396
Agnode_t * agnode(Agraph_t *g, char *name, int createflag)
Definition node.c:141
#define ND_rank(n)
Definition types.h:523
#define ND_prev(n)
Definition types.h:521
#define ND_ht(n)
Definition types.h:500
Agnode_t * agnxtnode(Agraph_t *g, Agnode_t *n)
Definition node.c:48
Agnode_t * agfstnode(Agraph_t *g)
Definition node.c:41
#define ND_has_port(n)
Definition types.h:495
#define ND_next(n)
Definition types.h:510
Agnode_t * agsubnode(Agraph_t *g, Agnode_t *n, int createflag)
Definition node.c:252
#define ND_clust(n)
Definition types.h:489
#define ND_other(n)
Definition types.h:514
#define ND_alg(n)
Definition types.h:484
#define ND_flat_out(n)
Definition types.h:493
#define ND_rw(n)
Definition types.h:525
#define ND_node_type(n)
Definition types.h:511
#define ND_lw(n)
Definition types.h:506
#define ND_mval(n)
Definition types.h:508
int agdelnode(Agraph_t *g, Agnode_t *arg_n)
removes a node from a graph or subgraph.
Definition node.c:190
#define ND_order(n)
Definition types.h:513
#define ND_UF_size(n)
Definition types.h:487
#define ND_weight_class(n)
Definition types.h:535
#define ND_low(n)
Definition types.h:505
#define ND_ranktype(n)
Definition types.h:524
#define ND_flat_in(n)
Definition types.h:492
#define ND_in(n)
Definition types.h:501
#define ND_out(n)
Definition types.h:515
char * agnameof(void *)
returns a string descriptor for the object.
Definition id.c:143
int agcontains(Agraph_t *, void *obj)
returns non-zero if obj is a member of (sub)graph
Definition obj.c:233
Agraph_t * agroot(void *obj)
Definition obj.c:168
#define AGSEQ(obj)
Definition cgraph.h:225
void * agbindrec(void *obj, const char *name, unsigned int recsize, int move_to_front)
attaches a new record of the given size to the object
Definition rec.c:89
Agraph_t * agfstsubg(Agraph_t *g)
Definition subg.c:73
Agraph_t * agnxtsubg(Agraph_t *subg)
Definition subg.c:78
Agraph_t * agsubg(Agraph_t *g, char *name, int cflag)
Definition subg.c:53
static void indent(int ix)
Definition gv2gml.c:94
bool rm(Agraph_t *g)
Definition gv.cpp:586
Arithmetic helper functions.
static int scale_clamp(int original, double scale)
scale up or down a non-negative integer, clamping to [0, INT_MAX]
Definition gv_math.h:76
#define SWAP(a, b)
Definition gv_math.h:134
static size_t zmax(size_t a, size_t b)
maximum of two sizes
Definition gv_math.h:29
$2 prev
Definition htmlparse.y:291
rows row
Definition htmlparse.y:320
static double cross(double *u, double *v)
#define ITOS(i)
Definition itos.h:43
#define ND_onstack(n)
Definition acyclic.c:29
#define ND_mark(n)
Definition acyclic.c:28
static Agedge_t * top(edge_stack_t *sp)
Definition tred.c:73
int install_cluster(graph_t *g, node_t *n, int pass, node_queue_t *q)
Definition cluster.c:378
int expand_cluster(graph_t *subg)
Definition cluster.c:278
void mark_lowclusters(Agraph_t *root)
Definition cluster.c:398
type-generic dynamically expanding list
#define LIST(type)
Definition list.h:55
#define LIST_POP_FRONT(list)
Definition list.h:394
#define LIST_CLEAR(list)
Definition list.h:240
#define LIST_APPEND(list, item)
Definition list.h:120
#define LIST_FREE(list)
Definition list.h:370
#define LIST_IS_EMPTY(list)
Definition list.h:90
#define LIST_PUSH_BACK(list, item)
Definition list.h:384
#define LIST_REVERSE(list)
Definition list.h:348
#define LIST_GET(list, index)
Definition list.h:155
#define neighbor(t, i, edim, elist)
Definition make_map.h:41
#define delta
Definition maze.c:136
#define isBackedge(e)
Definition mincross.c:269
static int betweenclust(edge_t *e)
Definition mincross.c:506
#define ND_hi(n)
Definition mincross.c:253
#define flatindex(v)
Definition mincross.c:112
static void free_matrix(adjmatrix_t *p)
Definition mincross.c:486
static bool ReMincross
Definition mincross.c:163
static bool flat_mval(node_t *n)
Definition mincross.c:1672
static bool inside_cluster(graph_t *g, node_t *v)
Definition mincross.c:984
#define ND_x(n)
Definition mincross.c:251
static int64_t mincross(graph_t *g, int startpass)
Definition mincross.c:771
#define ORDINARY
Definition mincross.c:1807
static void init_mccomp(graph_t *g, size_t c)
Definition mincross.c:494
static void mincross_step(graph_t *g, int pass)
Definition mincross.c:1545
static int topsort(Agraph_t *g, Agraph_t *sg, Agnode_t **arr)
Definition mincross.c:282
static bool medians(graph_t *g, int r0, int r1)
Definition mincross.c:1704
static void reorder(graph_t *g, int r, bool reverse, bool hasfixed)
Definition mincross.c:1493
#define VAL(node, port)
Definition mincross.c:1702
static int edgeidcmpf(const void *, const void *)
Definition mincross.c:1784
static void flat_breakcycles(graph_t *g)
Definition mincross.c:1186
static void cleanup2(graph_t *g, int64_t nc)
Definition mincross.c:916
#define MARK(v)
Definition mincross.c:110
static bool is_a_normal_node_of(graph_t *g, node_t *v)
Definition mincross.c:968
static void save_best(graph_t *g)
Definition mincross.c:852
static void exchange(node_t *v, node_t *w)
Definition mincross.c:700
#define C_VS
Definition mincross.c:1813
static void init_mincross(graph_t *g)
Definition mincross.c:1103
static int64_t rcross(graph_t *g, int r)
Definition mincross.c:1595
static Agraph_t * realFillRanks(Agraph_t *g, bitarray_t *ranks, Agraph_t *sg)
Definition mincross.c:1057
#define ND_np(n)
Definition mincross.c:254
static int64_t transpose_step(graph_t *g, int r, bool reverse)
Definition mincross.c:713
static void fixLabelOrder(graph_t *g, rank_t *rk)
for each pair of nodes (labels), we add an edge
Definition mincross.c:324
void virtual_weight(edge_t *e)
Definition mincross.c:1832
static void merge2(graph_t *g)
Definition mincross.c:889
static int64_t mincross_clust(graph_t *g)
Definition mincross.c:612
static node_t * furthestnode(graph_t *g, node_t *v, int dir)
Definition mincross.c:988
static int out_cross(node_t *v, node_t *w)
Definition mincross.c:681
static int ordercmpf(const void *, const void *)
Definition mincross.c:1651
void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass)
Definition mincross.c:1369
static void do_ordering(graph_t *g, bool outflag)
Definition mincross.c:552
static void matrix_set(adjmatrix_t *me, size_t row, size_t col)
Definition mincross.c:70
void checkLabelOrder(graph_t *g)
Definition mincross.c:378
static int GlobalMinRank
Definition mincross.c:160
static const double Convergence
Definition mincross.c:157
int build_ranks(graph_t *g, int pass)
Definition mincross.c:1293
#define SINGLETON
Definition mincross.c:1808
static Agnode_t * findSource(Agraph_t *g, Agraph_t *sg)
Definition mincross.c:272
static int * TI_list
Definition mincross.c:162
void rec_save_vlists(graph_t *g)
Definition mincross.c:1010
#define C_EE
Definition mincross.c:1812
static void do_ordering_node(graph_t *g, node_t *n, bool outflag)
Definition mincross.c:513
static int64_t in_cross(node_t *v, node_t *w)
Definition mincross.c:662
static graph_t * Root
Definition mincross.c:159
static adjmatrix_t * new_matrix(size_t initial_rows, size_t initial_columns)
Definition mincross.c:477
#define C_VV
Definition mincross.c:1815
static void flat_search(graph_t *g, node_t *v)
Definition mincross.c:1154
static void ordered_edges(graph_t *g)
Definition mincross.c:585
static void transpose(graph_t *g, bool reverse)
Definition mincross.c:754
#define NTYPES
Definition mincross.c:1810
void rec_reset_vlists(graph_t *g)
Definition mincross.c:1020
static void merge_components(graph_t *g)
Definition mincross.c:865
int dot_mincross(graph_t *g)
Definition mincross.c:412
static int64_t ncross(void)
Definition mincross.c:1634
static void mincross_options(graph_t *g)
Definition mincross.c:1890
static int endpoint_class(node_t *n)
Definition mincross.c:1823
static int getComp(graph_t *g, node_t *n, graph_t *comp, int *indices)
Definition mincross.c:301
static int GlobalMaxRank
Definition mincross.c:160
static bool left2right(graph_t *g, node_t *v, node_t *w)
Definition mincross.c:638
static int local_cross(elist l, int dir)
Definition mincross.c:1573
static void flat_reorder(graph_t *g)
Definition mincross.c:1422
#define C_SS
Definition mincross.c:1814
static void flat_rev(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1127
static void emptyComp(graph_t *sg)
Definition mincross.c:258
static bool is_a_vnode_of_an_edge_of(graph_t *g, node_t *v)
Definition mincross.c:972
static void fillRanks(Agraph_t *g)
Definition mincross.c:1095
static void do_ordering_for_nodes(graph_t *g)
Definition mincross.c:561
static int MinQuit
Definition mincross.c:156
static edge_t ** TE_list
Definition mincross.c:161
void allocate_ranks(graph_t *g)
Definition mincross.c:1217
#define ND_lo(n)
Definition mincross.c:252
static int table[NTYPES][NTYPES]
Definition mincross.c:1817
static void restore_best(graph_t *g)
Definition mincross.c:834
static bool matrix_get(adjmatrix_t *me, size_t row, size_t col)
Definition mincross.c:48
static bool constraining_flat_edge(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1391
#define ND_idx(n)
Definition mincross.c:255
static int nodeposcmpf(const void *, const void *)
Definition mincross.c:1762
#define saveorder(v)
Definition mincross.c:111
void save_vlist(graph_t *g)
Definition mincross.c:1000
int install_in_rank(graph_t *g, node_t *n)
Definition mincross.c:1245
#define VIRTUALNODE
Definition mincross.c:1809
#define M
Definition randomkit.c:90
static bool streq(const char *a, const char *b)
are a and b equal?
Definition streq.h:11
Agobj_t base
Definition cgraph.h:269
Agrec_t * data
stores programmer-defined data, access with AGDATA
Definition cgraph.h:212
graph or subgraph
Definition cgraph.h:424
Agraph_t * parent
Definition cgraph.h:433
implementation of Agrec_t
Definition cgraph.h:172
size_t nrows
how many rows have been allocated?
Definition mincross.c:37
uint8_t * data
bit-packed backing memory
Definition mincross.c:39
size_t ncols
how many columns have been allocated?
Definition mincross.c:38
Definition types.h:251
edge_t ** list
Definition types.h:252
int hi
Definition mincross.c:247
Agrec_t h
Definition mincross.c:246
Agnode_t * np
Definition mincross.c:248
node_t ** v
Definition types.h:202
int n
Definition types.h:201
double elapsed_sec(void)
Definition timing.c:21
void start_timer(void)
Definition timing.c:19
#define elist_append(item, L)
Definition types.h:261
#define alloc_elist(n, L)
Definition types.h:267
Definition grammar.c:90