Graphviz 14.0.5~dev.20251117.1017
Loading...
Searching...
No Matches
mincross.c
Go to the documentation of this file.
1/*************************************************************************
2 * Copyright (c) 2011 AT&T Intellectual Property
3 * All rights reserved. This program and the accompanying materials
4 * are made available under the terms of the Eclipse Public License v1.0
5 * which accompanies this distribution, and is available at
6 * https://www.eclipse.org/legal/epl-v10.html
7 *
8 * Contributors: Details at https://graphviz.org
9 *************************************************************************/
10
11
12/*
13 * dot_mincross(g) takes a ranked graphs, and finds an ordering
14 * that avoids edge crossings. clusters are expanded.
15 * N.B. the rank structure is global (not allocated per cluster)
16 * because mincross may compare nodes in different clusters.
17 */
18
19#include <assert.h>
20#include <cgraph/cgraph.h>
21#include <dotgen/dot.h>
22#include <inttypes.h>
23#include <limits.h>
24#include <stdbool.h>
25#include <stdint.h>
26#include <stdlib.h>
27#include <string.h>
28#include <util/alloc.h>
29#include <util/bitarray.h>
30#include <util/exit.h>
31#include <util/gv_math.h>
32#include <util/itos.h>
33#include <util/list.h>
34#include <util/streq.h>
35
37 size_t nrows;
38 size_t ncols;
39 uint8_t *data;
40};
41
48static bool matrix_get(adjmatrix_t *me, size_t row, size_t col) {
49 assert(me != NULL);
50
51 // if this index is beyond anything allocated, infer it as unset
52 if (row >= me->nrows) {
53 return false;
54 }
55 if (col >= me->ncols) {
56 return false;
57 }
58
59 const size_t index = row * me->ncols + col;
60 const size_t byte_index = index / 8;
61 const size_t bit_index = index % 8;
62 return (me->data[byte_index] >> bit_index) & 1;
63}
64
70static void matrix_set(adjmatrix_t *me, size_t row, size_t col) {
71 assert(me != NULL);
72
73 // if we are updating beyond allocated space, expand the backing store
74 if (row >= me->nrows || col >= me->ncols) {
75 // allocate an enlarged space
76 const size_t nrows = zmax(me->nrows, row + 1);
77 const size_t ncols = zmax(me->ncols, col + 1);
78 const size_t bits = nrows * ncols;
79 const size_t bytes = bits / 8 + (bits % 8 == 0 ? 0 : 1);
80 uint8_t *const data = gv_alloc(bytes);
81
82 // replicate set bits
83 for (size_t r = 0; r < me->nrows; ++r) {
84 for (size_t c = 0; c < me->ncols; ++c) {
85 if (!matrix_get(me, r, c)) {
86 continue;
87 }
88 const size_t index = r * ncols + c;
89 const size_t byte_index = index / 8;
90 const size_t bit_index = index % 8;
91 data[byte_index] |= (uint8_t)(UINT8_C(1) << bit_index);
92 }
93 }
94
95 // replace old matrix with newly expanded one
96 free(me->data);
97 *me = (adjmatrix_t){.nrows = nrows, .ncols = ncols, .data = data};
98 }
99
100 assert(row < me->nrows);
101 assert(col < me->ncols);
102
103 const size_t index = row * me->ncols + col;
104 const size_t byte_index = index / 8;
105 const size_t bit_index = index % 8;
106 me->data[byte_index] |= (uint8_t)(UINT8_C(1) << bit_index);
107}
108
109/* #define DEBUG */
110#define MARK(v) (ND_mark(v))
111#define saveorder(v) (ND_coord(v)).x
112#define flatindex(v) ((size_t)ND_low(v))
113
114 /* forward declarations */
115static bool medians(graph_t * g, int r0, int r1);
116static int nodeposcmpf(const void *, const void *);
117static int edgeidcmpf(const void *, const void *);
118static void flat_breakcycles(graph_t * g);
119static void flat_reorder(graph_t * g);
120static void flat_search(graph_t * g, node_t * v);
121static void init_mincross(graph_t * g);
122static void merge2(graph_t * g);
123static void init_mccomp(graph_t *g, size_t c);
124static void cleanup2(graph_t *g, int64_t nc);
126static int64_t mincross_clust(graph_t *g);
128static int64_t mincross(graph_t *g, int startpass);
129static void mincross_step(graph_t * g, int pass);
130static void mincross_options(graph_t * g);
131static void save_best(graph_t * g);
132static void restore_best(graph_t * g);
133
142static adjmatrix_t *new_matrix(size_t initial_rows, size_t initial_columns);
143
144static void free_matrix(adjmatrix_t * p);
145static int ordercmpf(const void *, const void *);
146static int64_t ncross(void);
147#ifdef DEBUG
148void check_rs(graph_t * g, int null_ok);
149void check_order(void);
150void check_vlists(graph_t * g);
151void node_in_root_vlist(node_t * n);
152#endif
153
154
155 /* mincross parameters */
156static int MinQuit;
157static const double Convergence = .995;
158
159static graph_t *Root;
162static int *TI_list;
163static bool ReMincross;
164
165#if defined(DEBUG) && DEBUG > 1
166static void indent(graph_t* g)
167{
168 if (g->parent) {
169 fprintf (stderr, " ");
170 indent(g->parent);
171 }
172}
173
175static void nname(node_t *v, FILE *stream) {
176 if (ND_node_type(v)) {
177 if (ND_ranktype(v) == CLUSTER)
178 fprintf(stream, "v%s_%p", agnameof(ND_clust(v)), v);
179 else
180 fprintf(stream, "v_%p", v);
181 } else
182 fputs(agnameof(v), stream);
183}
184static void dumpg (graph_t* g)
185{
186 edge_t* e;
187
188 fprintf (stderr, "digraph A {\n");
189 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
190 fprintf (stderr, " subgraph {rank=same ");
191 const char *trailer = " }\n";
192 for (int i = 0; i < GD_rank(g)[r].n; i++) {
193 node_t *const v = GD_rank(g)[r].v[i];
194 if (i > 0) {
195 fputs(" -> ", stderr);
196 trailer = " [style=invis]}\n";
197 }
198 nname(v, stderr);
199 }
200 fputs(trailer, stderr);
201 }
202 for (int r = GD_minrank(g); r < GD_maxrank(g); r++) {
203 for (int i = 0; i < GD_rank(g)[r].n; i++) {
204 node_t *const v = GD_rank(g)[r].v[i];
205 for (int j = 0; (e = ND_out(v).list[j]); j++) {
206 nname(v, stderr);
207 fputs(" -> ", stderr);
208 nname(aghead(e), stderr);
209 fputc('\n', stderr);
210 }
211 }
212 }
213 fprintf (stderr, "}\n");
214}
215static void dumpr (graph_t* g, int edges)
216{
217 int j, i, r;
218 node_t* v;
219 edge_t* e;
220
221 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
222 fprintf (stderr, "[%d] ", r);
223 for (i = 0; i < GD_rank(g)[r].n; i++) {
224 v = GD_rank(g)[r].v[i];
225 nname(v, stderr);
226 fprintf(stderr, "(%.02f,%d) ", saveorder(v),ND_order(v));
227 }
228 fprintf (stderr, "\n");
229 }
230 if (edges == 0) return;
231 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
232 for (i = 0; i < GD_rank(g)[r].n; i++) {
233 v = GD_rank(g)[r].v[i];
234 for (j = 0; (e = ND_out(v).list[j]); j++) {
235 nname(v, stderr);
236 fputs(" -> ", stderr);
237 nname(aghead(e), stderr);
238 fputc('\n', stderr);
239 }
240 }
241 }
242}
243#endif
244
245typedef struct {
247 int x, lo, hi;
249} info_t;
250
251#define ND_x(n) (((info_t*)AGDATA(n))->x)
252#define ND_lo(n) (((info_t*)AGDATA(n))->lo)
253#define ND_hi(n) (((info_t*)AGDATA(n))->hi)
254#define ND_np(n) (((info_t*)AGDATA(n))->np)
255#define ND_idx(n) (ND_order(ND_np(n)))
256
257static void
259{
260 Agnode_t* n;
261 Agnode_t* nxt;
262
263 for (n = agfstnode(sg); n; n = nxt) {
264 nxt = agnxtnode (sg, n);
265 agdelnode(sg,n);
266 }
267}
268
269#define isBackedge(e) (ND_idx(aghead(e)) > ND_idx(agtail(e)))
270
271static Agnode_t*
273{
274 Agnode_t* n;
275
276 for (n = agfstnode(sg); n; n = agnxtnode(sg, n))
277 if (agdegree(g,n,1,0) == 0) return n;
278 return NULL;
279}
280
281static int
283{
284 Agnode_t* n;
285 Agedge_t* e;
286 Agedge_t* nxte;
287 int cnt = 0;
288
289 while ((n = findSource(g, sg))) {
290 arr[cnt++] = ND_np(n);
291 agdelnode(sg, n);
292 for (e = agfstout(g, n); e; e = nxte) {
293 nxte = agnxtout(g, e);
294 agdeledge(g, e);
295 }
296 }
297 return cnt;
298}
299
300static int
301getComp (graph_t* g, node_t* n, graph_t* comp, int* indices)
302{
303 int backedge = 0;
304 Agedge_t* e;
305
306 ND_x(n) = 1;
307 indices[agnnodes(comp)] = ND_idx(n);
308 agsubnode(comp, n, 1);
309 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
310 if (isBackedge(e)) backedge++;
311 if (!ND_x(aghead(e)))
312 backedge += getComp(g, aghead(e), comp, indices);
313 }
314 for (e = agfstin(g,n); e; e = agnxtin(g,e)) {
315 if (isBackedge(e)) backedge++;
316 if (!ND_x(agtail(e)))
317 backedge += getComp(g, agtail(e), comp, indices);
318 }
319 return backedge;
320}
321
323static void
325{
326 int cnt;
327 bool haveBackedge = false;
328 Agraph_t* sg;
329 Agnode_t* n;
330 Agnode_t* nxtp;
331 Agnode_t* v;
332
333 for (n = agfstnode(g); n; n = nxtp) {
334 v = nxtp = agnxtnode(g, n);
335 for (; v; v = agnxtnode(g, v)) {
336 if (ND_hi(v) <= ND_lo(n)) {
337 haveBackedge = true;
338 agedge(g, v, n, NULL, 1);
339 }
340 else if (ND_hi(n) <= ND_lo(v)) {
341 agedge(g, n, v, NULL, 1);
342 }
343 }
344 }
345 if (!haveBackedge) return;
346
347 sg = agsubg(g, "comp", 1);
348 Agnode_t **arr = gv_calloc(agnnodes(g), sizeof(Agnode_t*));
349 int *indices = gv_calloc(agnnodes(g), sizeof(int));
350
351 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
352 if (ND_x(n) || agdegree(g,n,1,1) == 0) continue;
353 if (getComp(g, n, sg, indices)) {
354 int i, sz = agnnodes(sg);
355 cnt = topsort (g, sg, arr);
356 assert (cnt == sz);
357 qsort(indices, cnt, sizeof(int), ordercmpf);
358 for (i = 0; i < sz; i++) {
359 ND_order(arr[i]) = indices[i];
360 rk->v[indices[i]] = arr[i];
361 }
362 }
363 emptyComp(sg);
364 }
365 free(indices);
366 free (arr);
367}
368
369/* Check that the ordering of labels for flat edges is consistent.
370 * This is necessary because dot_position will attempt to force the label
371 * to be between the edge's vertices. This can lead to an infeasible problem.
372 *
373 * We check each rank for any flat edge labels (as dummy nodes) and create a
374 * graph with a node for each label. If the graph contains more than 1 node, we
375 * call fixLabelOrder to see if there really is a problem and, if so, fix it.
376 */
377void
379{
380 graph_t* lg = NULL;
381
382 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
383 rank_t *const rk = GD_rank(g)+r;
384 for (int j = 0; j < rk->n; j++) {
385 Agnode_t *const u = rk->v[j];
386 if (ND_alg(u)) {
387 if (!lg) lg = agopen ("lg", Agstrictdirected, 0);
388 Agnode_t *const n = agnode(lg, ITOS(j), 1);
389 agbindrec(n, "info", sizeof(info_t), true);
390 int lo = ND_order(aghead(ND_out(u).list[0]));
391 int hi = ND_order(aghead(ND_out(u).list[1]));
392 if (lo > hi) {
393 SWAP(&lo, &hi);
394 }
395 ND_lo(n) = lo;
396 ND_hi(n) = hi;
397 ND_np(n) = u;
398 }
399 }
400 if (lg) {
401 if (agnnodes(lg) > 1) fixLabelOrder (lg, rk);
402 agclose(lg);
403 lg = NULL;
404 }
405 }
406}
407
408/* Minimize edge crossings
409 * Note that nodes are not placed into GD_rank(g) until mincross()
410 * is called.
411 */
413 int64_t nc;
414 char *s;
415
416 /* check whether malformed input has led to empty cluster that the crossing
417 * functions will not anticipate
418 */
419 {
420 size_t i;
421 for (i = 1; i <= (size_t)GD_n_cluster(g); ) {
422 if (agfstnode(GD_clust(g)[i]) == NULL) {
423 agwarningf("removing empty cluster\n");
424 memmove(&GD_clust(g)[i], &GD_clust(g)[i + 1],
425 ((size_t)GD_n_cluster(g) - i) * sizeof(GD_clust(g)[0]));
426 --GD_n_cluster(g);
427 } else {
428 ++i;
429 }
430 }
431 }
432
433 init_mincross(g);
434
435 size_t comp;
436 for (nc = 0, comp = 0; comp < GD_comp(g).size; comp++) {
437 init_mccomp(g, comp);
438 const int64_t mc = mincross(g, 0);
439 if (mc < 0) {
440 return -1;
441 }
442 nc += mc;
443 }
444
445 merge2(g);
446
447 /* run mincross on contents of each cluster */
448 for (int c = 1; c <= GD_n_cluster(g); c++) {
449 const int64_t mc = mincross_clust(GD_clust(g)[c]);
450 if (mc < 0) {
451 return -1;
452 }
453 nc += mc;
454#ifdef DEBUG
455 check_vlists(GD_clust(g)[c]);
456 check_order();
457#endif
458 }
459
460 if (GD_n_cluster(g) > 0 && (!(s = agget(g, "remincross")) || mapbool(s))) {
462 ReMincross = true;
463 const int64_t mc = mincross(g, 2);
464 if (mc < 0) {
465 return -1;
466 }
467 nc = mc;
468#ifdef DEBUG
469 for (int c = 1; c <= GD_n_cluster(g); c++)
470 check_vlists(GD_clust(g)[c]);
471#endif
472 }
473 cleanup2(g, nc);
474 return 0;
475}
476
477static adjmatrix_t *new_matrix(size_t initial_rows, size_t initial_columns) {
478 adjmatrix_t *rv = gv_alloc(sizeof(adjmatrix_t));
479 const size_t bits = initial_rows * initial_columns;
480 const size_t bytes = bits / 8 + (bits % 8 == 0 ? 0 : 1);
481 uint8_t *const data = gv_alloc(bytes);
482 *rv = (adjmatrix_t){.nrows = initial_rows, .ncols = initial_columns, .data = data};
483 return rv;
484}
485
486static void free_matrix(adjmatrix_t * p)
487{
488 if (p) {
489 free(p->data);
490 free(p);
491 }
492}
493
494static void init_mccomp(graph_t *g, size_t c) {
495 int r;
496
497 GD_nlist(g) = GD_comp(g).list[c];
498 if (c > 0) {
499 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
500 GD_rank(g)[r].v = GD_rank(g)[r].v + GD_rank(g)[r].n;
501 GD_rank(g)[r].n = 0;
502 }
503 }
504}
505
506static int betweenclust(edge_t * e)
507{
508 while (ED_to_orig(e))
509 e = ED_to_orig(e);
510 return (ND_clust(agtail(e)) != ND_clust(aghead(e)));
511}
512
513static void do_ordering_node(graph_t *g, node_t *n, bool outflag) {
514 int i, ne;
515 node_t *u, *v;
516 edge_t *e, *f, *fe;
517 edge_t **sortlist = TE_list;
518
519 if (ND_clust(n))
520 return;
521 if (outflag) {
522 for (i = ne = 0; (e = ND_out(n).list[i]); i++)
523 if (!betweenclust(e))
524 sortlist[ne++] = e;
525 } else {
526 for (i = ne = 0; (e = ND_in(n).list[i]); i++)
527 if (!betweenclust(e))
528 sortlist[ne++] = e;
529 }
530 if (ne <= 1)
531 return;
532 /* write null terminator at end of list.
533 requires +1 in TE_list alloccation */
534 sortlist[ne] = 0;
535 qsort(sortlist, ne, sizeof(sortlist[0]), edgeidcmpf);
536 for (ne = 1; (f = sortlist[ne]); ne++) {
537 e = sortlist[ne - 1];
538 if (outflag) {
539 u = aghead(e);
540 v = aghead(f);
541 } else {
542 u = agtail(e);
543 v = agtail(f);
544 }
545 if (find_flat_edge(u, v))
546 return;
547 fe = new_virtual_edge(u, v, NULL);
549 flat_edge(g, fe);
550 }
551}
552
553static void do_ordering(graph_t *g, bool outflag) {
554 /* Order all nodes in graph */
555 node_t *n;
556
557 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
558 do_ordering_node (g, n, outflag);
559 }
560}
561
563{
564 /* Order nodes which have the "ordered" attribute */
565 node_t *n;
566 const char *ordering;
567
568 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
569 if ((ordering = late_string(n, N_ordering, NULL))) {
570 if (streq(ordering, "out"))
571 do_ordering_node(g, n, true);
572 else if (streq(ordering, "in"))
573 do_ordering_node(g, n, false);
574 else if (ordering[0])
575 agerrorf("ordering '%s' not recognized for node '%s'.\n", ordering, agnameof(n));
576 }
577 }
578}
579
580/* handle case where graph specifies edge ordering
581 * If the graph does not have an ordering attribute, we then
582 * check for nodes having the attribute.
583 * Note that, in this implementation, the value of G_ordering
584 * dominates the value of N_ordering.
585 */
586static void ordered_edges(graph_t * g)
587{
588 char *ordering;
589
590 if (!G_ordering && !N_ordering)
591 return;
592 if ((ordering = late_string(g, G_ordering, NULL))) {
593 if (streq(ordering, "out"))
594 do_ordering(g, true);
595 else if (streq(ordering, "in"))
596 do_ordering(g, false);
597 else if (ordering[0])
598 agerrorf("ordering '%s' not recognized.\n", ordering);
599 }
600 else
601 {
602 graph_t *subg;
603
604 for (subg = agfstsubg(g); subg; subg = agnxtsubg(subg)) {
605 /* clusters are processed by separate calls to ordered_edges */
606 if (!is_cluster(subg))
607 ordered_edges(subg);
608 }
610 }
611}
612
613static int64_t mincross_clust(graph_t *g) {
614 int c;
615
616 if (expand_cluster(g) != 0) {
617 return -1;
618 }
619 ordered_edges(g);
621 flat_reorder(g);
622 int64_t nc = mincross(g, 2);
623 if (nc < 0) {
624 return nc;
625 }
626
627 for (c = 1; c <= GD_n_cluster(g); c++) {
628 const int64_t mc = mincross_clust(GD_clust(g)[c]);
629 if (mc < 0) {
630 return mc;
631 }
632 nc += mc;
633 }
634
635 save_vlist(g);
636 return nc;
637}
638
639static bool left2right(graph_t *g, node_t *v, node_t *w) {
640 /* CLUSTER indicates orig nodes of clusters, and vnodes of skeletons */
641 if (!ReMincross) {
642 if (ND_clust(v) != ND_clust(w) && ND_clust(v) && ND_clust(w)) {
643 /* the following allows cluster skeletons to be swapped */
644 if (ND_ranktype(v) == CLUSTER && ND_node_type(v) == VIRTUAL)
645 return false;
646 if (ND_ranktype(w) == CLUSTER && ND_node_type(w) == VIRTUAL)
647 return false;
648 return true;
649 }
650 } else {
651 if (ND_clust(v) != ND_clust(w))
652 return true;
653 }
654 adjmatrix_t *const M = GD_rank(g)[ND_rank(v)].flat;
655 if (M == NULL)
656 return false;
657 if (GD_flip(g)) {
658 SWAP(&v, &w);
659 }
660 return matrix_get(M, (size_t)flatindex(v), (size_t)flatindex(w));
661}
662
663static int64_t in_cross(node_t *v, node_t *w) {
664 edge_t **e1, **e2;
665 int inv, t;
666 int64_t cross = 0;
667
668 for (e2 = ND_in(w).list; *e2; e2++) {
669 int cnt = ED_xpenalty(*e2);
670
671 inv = ND_order(agtail(*e2));
672
673 for (e1 = ND_in(v).list; *e1; e1++) {
674 t = ND_order(agtail(*e1)) - inv;
675 if (t > 0 || (t == 0 && ED_tail_port(*e1).p.x > ED_tail_port(*e2).p.x))
676 cross += ED_xpenalty(*e1) * cnt;
677 }
678 }
679 return cross;
680}
681
682static int out_cross(node_t * v, node_t * w)
683{
684 edge_t **e1, **e2;
685 int inv, cross = 0, t;
686
687 for (e2 = ND_out(w).list; *e2; e2++) {
688 int cnt = ED_xpenalty(*e2);
689 inv = ND_order(aghead(*e2));
690
691 for (e1 = ND_out(v).list; *e1; e1++) {
692 t = ND_order(aghead(*e1)) - inv;
693 if (t > 0 || (t == 0 && (ED_head_port(*e1)).p.x > (ED_head_port(*e2)).p.x))
694 cross += ED_xpenalty(*e1) * cnt;
695 }
696 }
697 return cross;
698
699}
700
701static void exchange(node_t * v, node_t * w)
702{
703 int vi, wi, r;
704
705 r = ND_rank(v);
706 vi = ND_order(v);
707 wi = ND_order(w);
708 ND_order(v) = wi;
709 GD_rank(Root)[r].v[wi] = v;
710 ND_order(w) = vi;
711 GD_rank(Root)[r].v[vi] = w;
712}
713
714static int64_t transpose_step(graph_t *g, int r, bool reverse) {
715 int i;
716 node_t *v, *w;
717
718 int64_t rv = 0;
719 GD_rank(g)[r].candidate = false;
720 for (i = 0; i < GD_rank(g)[r].n - 1; i++) {
721 v = GD_rank(g)[r].v[i];
722 w = GD_rank(g)[r].v[i + 1];
723 assert(ND_order(v) < ND_order(w));
724 if (left2right(g, v, w))
725 continue;
726 int64_t c0 = 0;
727 int64_t c1 = 0;
728 if (r > 0) {
729 c0 += in_cross(v, w);
730 c1 += in_cross(w, v);
731 }
732 if (GD_rank(g)[r + 1].n > 0) {
733 c0 += out_cross(v, w);
734 c1 += out_cross(w, v);
735 }
736 if (c1 < c0 || (c0 > 0 && reverse && c1 == c0)) {
737 exchange(v, w);
738 rv += c0 - c1;
739 GD_rank(Root)[r].valid = false;
740 GD_rank(g)[r].candidate = true;
741
742 if (r > GD_minrank(g)) {
743 GD_rank(Root)[r - 1].valid = false;
744 GD_rank(g)[r - 1].candidate = true;
745 }
746 if (r < GD_maxrank(g)) {
747 GD_rank(Root)[r + 1].valid = false;
748 GD_rank(g)[r + 1].candidate = true;
749 }
750 }
751 }
752 return rv;
753}
754
755static void transpose(graph_t * g, bool reverse)
756{
757 int r;
758
759 for (r = GD_minrank(g); r <= GD_maxrank(g); r++)
760 GD_rank(g)[r].candidate = true;
761 int64_t delta;
762 do {
763 delta = 0;
764 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
765 if (GD_rank(g)[r].candidate) {
766 delta += transpose_step(g, r, reverse);
767 }
768 }
769 } while (delta >= 1);
770}
771
772static int64_t mincross(graph_t *g, int startpass) {
773 const int endpass = 2;
774 int maxthispass = 0, iter, trying, pass;
775 int64_t cur_cross, best_cross;
776
777 if (startpass > 1) {
778 cur_cross = best_cross = ncross();
779 save_best(g);
780 } else
781 cur_cross = best_cross = INT64_MAX;
782 for (pass = startpass; pass <= endpass; pass++) {
783 if (pass <= 1) {
784 maxthispass = MIN(4, MaxIter);
785 if (g == dot_root(g))
786 if (build_ranks(g, pass) != 0) {
787 return -1;
788 }
789 if (pass == 0)
791 flat_reorder(g);
792
793 if ((cur_cross = ncross()) <= best_cross) {
794 save_best(g);
795 best_cross = cur_cross;
796 }
797 } else {
798 maxthispass = MaxIter;
799 if (cur_cross > best_cross)
800 restore_best(g);
801 cur_cross = best_cross;
802 }
803 trying = 0;
804 for (iter = 0; iter < maxthispass; iter++) {
805 if (Verbose)
806 fprintf(stderr,
807 "mincross: pass %d iter %d trying %d cur_cross %" PRId64 " best_cross %"
808 PRId64 "\n",
809 pass, iter, trying, cur_cross, best_cross);
810 if (trying++ >= MinQuit)
811 break;
812 if (cur_cross == 0)
813 break;
814 mincross_step(g, iter);
815 if ((cur_cross = ncross()) <= best_cross) {
816 save_best(g);
817 if (cur_cross < Convergence * (double)best_cross)
818 trying = 0;
819 best_cross = cur_cross;
820 }
821 }
822 if (cur_cross == 0)
823 break;
824 }
825 if (cur_cross > best_cross)
826 restore_best(g);
827 if (best_cross > 0) {
828 transpose(g, false);
829 best_cross = ncross();
830 }
831
832 return best_cross;
833}
834
835static void restore_best(graph_t * g)
836{
837 node_t *n;
838 int i, r;
839
840 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
841 for (i = 0; i < GD_rank(g)[r].n; i++) {
842 n = GD_rank(g)[r].v[i];
843 ND_order(n) = saveorder(n);
844 }
845 }
846 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
847 GD_rank(Root)[r].valid = false;
848 qsort(GD_rank(g)[r].v, GD_rank(g)[r].n, sizeof(GD_rank(g)[0].v[0]),
850 }
851}
852
853static void save_best(graph_t * g)
854{
855 node_t *n;
856 int i, r;
857 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
858 for (i = 0; i < GD_rank(g)[r].n; i++) {
859 n = GD_rank(g)[r].v[i];
860 saveorder(n) = ND_order(n);
861 }
862 }
863}
864
865/* merges the connected components of g */
866static void merge_components(graph_t * g)
867{
868 node_t *u, *v;
869
870 if (GD_comp(g).size <= 1)
871 return;
872 u = NULL;
873 for (size_t c = 0; c < GD_comp(g).size; c++) {
874 v = GD_comp(g).list[c];
875 if (u)
876 ND_next(u) = v;
877 ND_prev(v) = u;
878 while (ND_next(v)) {
879 v = ND_next(v);
880 }
881 u = v;
882 }
883 GD_comp(g).size = 1;
884 GD_nlist(g) = GD_comp(g).list[0];
887}
888
889/* merge connected components, create globally consistent rank lists */
890static void merge2(graph_t * g)
891{
892 int i, r;
893 node_t *v;
894
895 /* merge the components and rank limits */
897
898 /* install complete ranks */
899 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
900 GD_rank(g)[r].n = GD_rank(g)[r].an;
901 GD_rank(g)[r].v = GD_rank(g)[r].av;
902 for (i = 0; i < GD_rank(g)[r].n; i++) {
903 v = GD_rank(g)[r].v[i];
904 if (v == NULL) {
905 if (Verbose)
906 fprintf(stderr,
907 "merge2: graph %s, rank %d has only %d < %d nodes\n",
908 agnameof(g), r, i, GD_rank(g)[r].n);
909 GD_rank(g)[r].n = i;
910 break;
911 }
912 ND_order(v) = i;
913 }
914 }
915}
916
917static void cleanup2(graph_t *g, int64_t nc) {
918 int i, j, r, c;
919 node_t *v;
920 edge_t *e;
921
922 if (TI_list) {
923 free(TI_list);
924 TI_list = NULL;
925 }
926 if (TE_list) {
927 free(TE_list);
928 TE_list = NULL;
929 }
930 /* fix vlists of clusters */
931 for (c = 1; c <= GD_n_cluster(g); c++)
933
934 /* remove node temporary edges for ordering nodes */
935 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
936 for (i = 0; i < GD_rank(g)[r].n; i++) {
937 v = GD_rank(g)[r].v[i];
938 ND_order(v) = i;
939 if (ND_flat_out(v).list) {
940 for (j = 0; (e = ND_flat_out(v).list[j]); j++)
941 if (ED_edge_type(e) == FLATORDER) {
943 free(e->base.data);
944 free(e);
945 j--;
946 }
947 }
948 }
949 free_matrix(GD_rank(g)[r].flat);
950 }
951 if (Verbose)
952 fprintf(stderr, "mincross %s: %" PRId64 " crossings, %.2f secs.\n",
953 agnameof(g), nc, elapsed_sec());
954}
955
956static node_t *neighbor(node_t * v, int dir)
957{
958 node_t *rv = NULL;
959assert(v);
960 if (dir < 0) {
961 if (ND_order(v) > 0)
962 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) - 1];
963 } else
964 rv = GD_rank(Root)[ND_rank(v)].v[ND_order(v) + 1];
965assert(rv == 0 || (ND_order(rv)-ND_order(v))*dir > 0);
966 return rv;
967}
968
969static bool is_a_normal_node_of(graph_t *g, node_t *v) {
970 return ND_node_type(v) == NORMAL && agcontains(g, v);
971}
972
974 if (ND_node_type(v) == VIRTUAL
975 && ND_in(v).size == 1 && ND_out(v).size == 1) {
976 edge_t *e = ND_out(v).list[0];
977 while (ED_edge_type(e) != NORMAL)
978 e = ED_to_orig(e);
979 if (agcontains(g, e))
980 return true;
981 }
982 return false;
983}
984
985static bool inside_cluster(graph_t *g, node_t *v) {
986 return is_a_normal_node_of(g, v) || is_a_vnode_of_an_edge_of(g, v);
987}
988
989static node_t *furthestnode(graph_t * g, node_t * v, int dir)
990{
991 node_t *rv = v;
992 for (node_t *u = v; (u = neighbor(u, dir)); ) {
993 if (is_a_normal_node_of(g, u))
994 rv = u;
995 else if (is_a_vnode_of_an_edge_of(g, u))
996 rv = u;
997 }
998 return rv;
999}
1000
1002{
1003 int r;
1004
1005 if (GD_rankleader(g))
1006 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1007 GD_rankleader(g)[r] = GD_rank(g)[r].v[0];
1008 }
1009}
1010
1012{
1013 int c;
1014
1015 save_vlist(g);
1016 for (c = 1; c <= GD_n_cluster(g); c++)
1018}
1019
1020
1022{
1023 // fix vlists of sub-clusters
1024 for (int c = 1; c <= GD_n_cluster(g); c++)
1026
1027 if (GD_rankleader(g))
1028 for (int r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1029 node_t *const v = GD_rankleader(g)[r];
1030 if (v == NULL) {
1031 continue;
1032 }
1033#ifdef DEBUG
1034 node_in_root_vlist(v);
1035#endif
1036 node_t *const u = furthestnode(g, v, -1);
1037 node_t *const w = furthestnode(g, v, 1);
1038 GD_rankleader(g)[r] = u;
1039#ifdef DEBUG
1040 assert(GD_rank(dot_root(g))[r].v[ND_order(u)] == u);
1041#endif
1042 GD_rank(g)[r].v = GD_rank(dot_root(g))[r].v + ND_order(u);
1043 GD_rank(g)[r].n = ND_order(w) - ND_order(u) + 1;
1044 }
1045}
1046
1047/* The structures in crossing minimization and positioning require
1048 * that clusters have some node on each rank. This function recursively
1049 * guarantees this property. It takes into account nodes and edges in
1050 * a cluster, the latter causing dummy nodes for intervening ranks.
1051 * For any rank without node, we create a real node of small size. This
1052 * is stored in the subgraph sg, for easy removal later.
1053 *
1054 * I believe it is not necessary to do this for the root graph, as these
1055 * are laid out one component at a time and these will necessarily have a
1056 * node on each rank from source to sink levels.
1057 */
1059 int i, c;
1060 Agedge_t* e;
1061 Agnode_t* n;
1062
1063 for (c = 1; c <= GD_n_cluster(g); c++)
1064 sg = realFillRanks(GD_clust(g)[c], ranks, sg);
1065
1066 if (dot_root(g) == g)
1067 return sg;
1068 bitarray_clear(ranks);
1069 for (n = agfstnode(g); n; n = agnxtnode(g,n)) {
1070 bitarray_set(ranks, ND_rank(n), true);
1071 for (e = agfstout(g,n); e; e = agnxtout(g,e)) {
1072 for (i = ND_rank(n)+1; i <= ND_rank(aghead(e)); i++)
1073 bitarray_set(ranks, i, true);
1074 }
1075 }
1076 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1077 if (!bitarray_get(*ranks, i)) {
1078 if (!sg) {
1079 sg = agsubg (dot_root(g), "_new_rank", 1);
1080 }
1081 n = agnode (sg, NULL, 1);
1082 agbindrec(n, "Agnodeinfo_t", sizeof(Agnodeinfo_t), true);
1083 ND_rank(n) = i;
1084 ND_lw(n) = ND_rw(n) = 0.5;
1085 ND_ht(n) = 1;
1086 ND_UF_size(n) = 1;
1087 alloc_elist(4, ND_in(n));
1088 alloc_elist(4, ND_out(n));
1089 agsubnode (g, n, 1);
1090 }
1091 }
1092 return sg;
1093}
1094
1095static void
1097{
1098 int rnks_sz = GD_maxrank(g) + 2;
1099 bitarray_t rnks = bitarray_new(rnks_sz);
1100 realFillRanks(g, &rnks, NULL);
1101 bitarray_reset(&rnks);
1102}
1103
1104static void init_mincross(graph_t * g)
1105{
1106 int size;
1107
1108 if (Verbose)
1109 start_timer();
1110
1111 ReMincross = false;
1112 Root = g;
1113 /* alloc +1 for the null terminator usage in do_ordering() */
1114 size = agnedges(dot_root(g)) + 1;
1115 TE_list = gv_calloc(size, sizeof(edge_t*));
1116 TI_list = gv_calloc(size, sizeof(int));
1118 if (GD_flags(g) & NEW_RANK)
1119 fillRanks (g);
1120 class2(g);
1121 decompose(g, 1);
1122 allocate_ranks(g);
1123 ordered_edges(g);
1126}
1127
1128static void flat_rev(Agraph_t * g, Agedge_t * e)
1129{
1130 int j;
1131 Agedge_t *rev;
1132
1133 if (!ND_flat_out(aghead(e)).list)
1134 rev = NULL;
1135 else
1136 for (j = 0; (rev = ND_flat_out(aghead(e)).list[j]); j++)
1137 if (aghead(rev) == agtail(e))
1138 break;
1139 if (rev) {
1140 merge_oneway(e, rev);
1141 if (ED_edge_type(rev) == FLATORDER && ED_to_orig(rev) == 0)
1142 ED_to_orig(rev) = e;
1144 } else {
1145 rev = new_virtual_edge(aghead(e), agtail(e), e);
1146 if (ED_edge_type(e) == FLATORDER)
1147 ED_edge_type(rev) = FLATORDER;
1148 else
1149 ED_edge_type(rev) = REVERSED;
1150 ED_label(rev) = ED_label(e);
1151 flat_edge(g, rev);
1152 }
1153}
1154
1155static void flat_search(graph_t * g, node_t * v)
1156{
1157 int i;
1158 bool hascl;
1159 edge_t *e;
1160 adjmatrix_t *M = GD_rank(g)[ND_rank(v)].flat;
1161
1162 ND_mark(v) = true;
1163 ND_onstack(v) = true;
1164 hascl = GD_n_cluster(dot_root(g)) > 0;
1165 if (ND_flat_out(v).list)
1166 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1167 if (hascl && !(agcontains(g, agtail(e)) && agcontains(g, aghead(e))))
1168 continue;
1169 if (ED_weight(e) == 0)
1170 continue;
1171 if (ND_onstack(aghead(e))) {
1172 matrix_set(M, (size_t)flatindex(aghead(e)), (size_t)flatindex(agtail(e)));
1174 i--;
1175 if (ED_edge_type(e) == FLATORDER)
1176 continue;
1177 flat_rev(g, e);
1178 } else {
1179 matrix_set(M, (size_t)flatindex(agtail(e)), (size_t)flatindex(aghead(e)));
1180 if (!ND_mark(aghead(e)))
1181 flat_search(g, aghead(e));
1182 }
1183 }
1184 ND_onstack(v) = false;
1185}
1186
1188{
1189 int i, r;
1190 node_t *v;
1191
1192 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1193 bool flat = false;
1194 for (i = 0; i < GD_rank(g)[r].n; i++) {
1195 v = GD_rank(g)[r].v[i];
1196 ND_mark(v) = false;
1197 ND_onstack(v) = false;
1198 ND_low(v) = i;
1199 if (ND_flat_out(v).size > 0 && !flat) {
1200 GD_rank(g)[r].flat =
1201 new_matrix((size_t)GD_rank(g)[r].n, (size_t)GD_rank(g)[r].n);
1202 flat = true;
1203 }
1204 }
1205 if (flat) {
1206 for (i = 0; i < GD_rank(g)[r].n; i++) {
1207 v = GD_rank(g)[r].v[i];
1208 if (!ND_mark(v))
1209 flat_search(g, v);
1210 }
1211 }
1212 }
1213}
1214
1215/* Allocate rank structure, determining number of nodes per rank.
1216 * Note that no nodes are put into the structure yet.
1217 */
1219{
1220 int r, low, high;
1221 node_t *n;
1222 edge_t *e;
1223
1224 int *cn = gv_calloc(GD_maxrank(g) + 2, sizeof(int)); // must be 0 based, not GD_minrank
1225 for (n = agfstnode(g); n; n = agnxtnode(g, n)) {
1226 cn[ND_rank(n)]++;
1227 for (e = agfstout(g, n); e; e = agnxtout(g, e)) {
1228 low = ND_rank(agtail(e));
1229 high = ND_rank(aghead(e));
1230 if (low > high) {
1231 SWAP(&low, &high);
1232 }
1233 for (r = low + 1; r < high; r++)
1234 cn[r]++;
1235 }
1236 }
1237 GD_rank(g) = gv_calloc(GD_maxrank(g) + 2, sizeof(rank_t));
1238 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1239 GD_rank(g)[r].an = GD_rank(g)[r].n = cn[r] + 1;
1240 GD_rank(g)[r].av = GD_rank(g)[r].v = gv_calloc(cn[r] + 1, sizeof(node_t*));
1241 }
1242 free(cn);
1243}
1244
1245/* install a node at the current right end of its rank */
1247 int i, r;
1248
1249 r = ND_rank(n);
1250 i = GD_rank(g)[r].n;
1251 if (GD_rank(g)[r].an <= 0) {
1252 agerrorf("install_in_rank, line %d: %s %s rank %d i = %d an = 0\n",
1253 __LINE__, agnameof(g), agnameof(n), r, i);
1254 return -1;
1255 }
1256
1257 GD_rank(g)[r].v[i] = n;
1258 ND_order(n) = i;
1259 GD_rank(g)[r].n++;
1260 assert(GD_rank(g)[r].n <= GD_rank(g)[r].an);
1261#ifdef DEBUG
1262 {
1263 node_t *v;
1264
1265 for (v = GD_nlist(g); v; v = ND_next(v))
1266 if (v == n)
1267 break;
1268 assert(v != NULL);
1269 }
1270#endif
1271 if (ND_order(n) > GD_rank(Root)[r].an) {
1272 agerrorf("install_in_rank, line %d: ND_order(%s) [%d] > GD_rank(Root)[%d].an [%d]\n",
1273 __LINE__, agnameof(n), ND_order(n), r, GD_rank(Root)[r].an);
1274 return -1;
1275 }
1276 if (r < GD_minrank(g) || r > GD_maxrank(g)) {
1277 agerrorf("install_in_rank, line %d: rank %d not in rank range [%d,%d]\n",
1278 __LINE__, r, GD_minrank(g), GD_maxrank(g));
1279 return -1;
1280 }
1281 if (GD_rank(g)[r].v + ND_order(n) >
1282 GD_rank(g)[r].av + GD_rank(Root)[r].an) {
1283 agerrorf("install_in_rank, line %d: GD_rank(g)[%d].v + ND_order(%s) [%d] > GD_rank(g)[%d].av + GD_rank(Root)[%d].an [%d]\n",
1284 __LINE__, r, agnameof(n),ND_order(n), r, r, GD_rank(Root)[r].an);
1285 return -1;
1286 }
1287 return 0;
1288}
1289
1290/* install nodes in ranks. the initial ordering ensure that series-parallel
1291 * graphs such as trees are drawn with no crossings. it tries searching
1292 * in- and out-edges and takes the better of the two initial orderings.
1293 */
1294int build_ranks(graph_t *g, int pass) {
1295 int i, j;
1296 node_t *n, *ns;
1297 edge_t **otheredges;
1298 node_queue_t q = {0};
1299 for (n = GD_nlist(g); n; n = ND_next(n))
1300 MARK(n) = false;
1301
1302#ifdef DEBUG
1303 {
1304 edge_t *e;
1305 for (n = GD_nlist(g); n; n = ND_next(n)) {
1306 for (i = 0; (e = ND_out(n).list[i]); i++)
1307 assert(!MARK(aghead(e)));
1308 for (i = 0; (e = ND_in(n).list[i]); i++)
1309 assert(!MARK(agtail(e)));
1310 }
1311 }
1312#endif
1313
1314 for (i = GD_minrank(g); i <= GD_maxrank(g); i++)
1315 GD_rank(g)[i].n = 0;
1316
1317 const bool walkbackwards = g != agroot(g); // if this is a cluster, need to
1318 // walk GD_nlist backward to
1319 // preserve input node order
1320 if (walkbackwards) {
1321 for (ns = GD_nlist(g); ND_next(ns); ns = ND_next(ns)) {
1322 ;
1323 }
1324 } else {
1325 ns = GD_nlist(g);
1326 }
1327 for (n = ns; n; n = walkbackwards ? ND_prev(n) : ND_next(n)) {
1328 otheredges = pass == 0 ? ND_in(n).list : ND_out(n).list;
1329 if (otheredges[0] != NULL)
1330 continue;
1331 if (!MARK(n)) {
1332 MARK(n) = true;
1333 LIST_PUSH_BACK(&q, n);
1334 while (!LIST_IS_EMPTY(&q)) {
1335 node_t *n0 = LIST_POP_FRONT(&q);
1336 if (ND_ranktype(n0) != CLUSTER) {
1337 if (install_in_rank(g, n0) != 0) {
1338 LIST_FREE(&q);
1339 return -1;
1340 }
1341 enqueue_neighbors(&q, n0, pass);
1342 } else {
1343 const int rc = install_cluster(g, n0, pass, &q);
1344 if (rc != 0) {
1345 LIST_FREE(&q);
1346 return rc;
1347 }
1348 }
1349 }
1350 }
1351 }
1352 assert(LIST_IS_EMPTY(&q));
1353 for (i = GD_minrank(g); i <= GD_maxrank(g); i++) {
1354 GD_rank(Root)[i].valid = false;
1355 if (GD_flip(g) && GD_rank(g)[i].n > 0) {
1356 node_t **vlist = GD_rank(g)[i].v;
1357 int num_nodes_1 = GD_rank(g)[i].n - 1;
1358 int half_num_nodes_1 = num_nodes_1 / 2;
1359 for (j = 0; j <= half_num_nodes_1; j++)
1360 exchange(vlist[j], vlist[num_nodes_1 - j]);
1361 }
1362 }
1363
1364 if (g == dot_root(g) && ncross() > 0)
1365 transpose(g, false);
1366 LIST_FREE(&q);
1367 return 0;
1368}
1369
1370void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass) {
1371 edge_t *e;
1372
1373 if (pass == 0) {
1374 for (size_t i = 0; i < ND_out(n0).size; i++) {
1375 e = ND_out(n0).list[i];
1376 if (!MARK(aghead(e))) {
1377 MARK(aghead(e)) = true;
1378 LIST_PUSH_BACK(q, aghead(e));
1379 }
1380 }
1381 } else {
1382 for (size_t i = 0; i < ND_in(n0).size; i++) {
1383 e = ND_in(n0).list[i];
1384 if (!MARK(agtail(e))) {
1385 MARK(agtail(e)) = true;
1386 LIST_PUSH_BACK(q, agtail(e));
1387 }
1388 }
1389 }
1390}
1391
1393 if (ED_weight(e) == 0)
1394 return false;
1395 if (!inside_cluster(g, agtail(e)))
1396 return false;
1397 if (!inside_cluster(g, aghead(e)))
1398 return false;
1399 return true;
1400}
1401
1402typedef LIST(node_t *) nodes_t;
1403
1404/* construct nodes reachable from 'here' in post-order.
1405* This is the same as doing a topological sort in reverse order.
1406*/
1407static void postorder(graph_t *g, node_t *v, nodes_t *list, int r) {
1408 edge_t *e;
1409 int i;
1410
1411 MARK(v) = true;
1412 if (ND_flat_out(v).size > 0) {
1413 for (i = 0; (e = ND_flat_out(v).list[i]); i++) {
1414 if (!constraining_flat_edge(g, e)) continue;
1415 if (!MARK(aghead(e)))
1416 postorder(g, aghead(e), list, r);
1417 }
1418 }
1419 assert(ND_rank(v) == r);
1420 LIST_APPEND(list, v);
1421}
1422
1423static void flat_reorder(graph_t * g)
1424{
1425 int i, r, local_in_cnt, local_out_cnt, base_order;
1426 node_t *v;
1427 nodes_t temprank = {0};
1428 edge_t *flat_e, *e;
1429
1430 if (!GD_has_flat_edges(g))
1431 return;
1432 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1433 if (GD_rank(g)[r].n == 0) continue;
1434 base_order = ND_order(GD_rank(g)[r].v[0]);
1435 for (i = 0; i < GD_rank(g)[r].n; i++)
1436 MARK(GD_rank(g)[r].v[i]) = false;
1437 LIST_CLEAR(&temprank);
1438
1439 /* construct reverse topological sort order in temprank */
1440 for (i = 0; i < GD_rank(g)[r].n; i++) {
1441 if (GD_flip(g)) v = GD_rank(g)[r].v[i];
1442 else v = GD_rank(g)[r].v[GD_rank(g)[r].n - i - 1];
1443
1444 local_in_cnt = local_out_cnt = 0;
1445 for (size_t j = 0; j < ND_flat_in(v).size; j++) {
1446 flat_e = ND_flat_in(v).list[j];
1447 if (constraining_flat_edge(g, flat_e)) local_in_cnt++;
1448 }
1449 for (size_t j = 0; j < ND_flat_out(v).size; j++) {
1450 flat_e = ND_flat_out(v).list[j];
1451 if (constraining_flat_edge(g, flat_e)) local_out_cnt++;
1452 }
1453 if (local_in_cnt == 0 && local_out_cnt == 0)
1454 LIST_APPEND(&temprank, v);
1455 else {
1456 if (!MARK(v) && local_in_cnt == 0) {
1457 postorder(g, v, &temprank, r);
1458 }
1459 }
1460 }
1461
1462 if (!LIST_IS_EMPTY(&temprank)) {
1463 if (!GD_flip(g)) {
1464 LIST_REVERSE(&temprank);
1465 }
1466 for (i = 0; i < GD_rank(g)[r].n; i++) {
1467 v = GD_rank(g)[r].v[i] = LIST_GET(&temprank, (size_t)i);
1468 ND_order(v) = i + base_order;
1469 }
1470
1471 /* nonconstraint flat edges must be made LR */
1472 for (i = 0; i < GD_rank(g)[r].n; i++) {
1473 v = GD_rank(g)[r].v[i];
1474 if (ND_flat_out(v).list) {
1475 for (size_t j = 0; (e = ND_flat_out(v).list[j]); j++) {
1476 if ((!GD_flip(g) && ND_order(aghead(e)) < ND_order(agtail(e))) ||
1477 (GD_flip(g) && ND_order(aghead(e)) > ND_order(agtail(e)))) {
1478 assert(!constraining_flat_edge(g, e));
1480 j--;
1481 flat_rev(g, e);
1482 }
1483 }
1484 }
1485 }
1486 /* postprocess to restore intended order */
1487 }
1488 /* else do no harm! */
1489 GD_rank(Root)[r].valid = false;
1490 }
1491 LIST_FREE(&temprank);
1492}
1493
1494static void reorder(graph_t * g, int r, bool reverse, bool hasfixed)
1495{
1496 int changed = 0, nelt;
1497 node_t **vlist = GD_rank(g)[r].v;
1498 node_t **lp, **rp, **ep = vlist + GD_rank(g)[r].n;
1499
1500 for (nelt = GD_rank(g)[r].n - 1; nelt >= 0; nelt--) {
1501 lp = vlist;
1502 while (lp < ep) {
1503 /* find leftmost node that can be compared */
1504 while (lp < ep && ND_mval(*lp) < 0)
1505 lp++;
1506 if (lp >= ep)
1507 break;
1508 /* find the node that can be compared */
1509 bool sawclust = false;
1510 bool muststay = false;
1511 for (rp = lp + 1; rp < ep; rp++) {
1512 if (sawclust && ND_clust(*rp))
1513 continue; /* ### */
1514 if (left2right(g, *lp, *rp)) {
1515 muststay = true;
1516 break;
1517 }
1518 if (ND_mval(*rp) >= 0)
1519 break;
1520 if (ND_clust(*rp))
1521 sawclust = true; /* ### */
1522 }
1523 if (rp >= ep)
1524 break;
1525 if (!muststay) {
1526 const double p1 = ND_mval(*lp);
1527 const double p2 = ND_mval(*rp);
1528 if (p1 > p2 || (p1 >= p2 && reverse)) {
1529 exchange(*lp, *rp);
1530 changed++;
1531 }
1532 }
1533 lp = rp;
1534 }
1535 if (!hasfixed && !reverse)
1536 ep--;
1537 }
1538
1539 if (changed) {
1540 GD_rank(Root)[r].valid = false;
1541 if (r > 0)
1542 GD_rank(Root)[r - 1].valid = false;
1543 }
1544}
1545
1546static void mincross_step(graph_t * g, int pass)
1547{
1548 int r, other, first, last, dir;
1549
1550 bool reverse = pass % 4 < 2;
1551
1552 if (pass % 2 == 0) { /* down pass */
1553 first = GD_minrank(g) + 1;
1554 if (GD_minrank(g) > GD_minrank(Root))
1555 first--;
1556 last = GD_maxrank(g);
1557 dir = 1;
1558 } else { /* up pass */
1559 first = GD_maxrank(g) - 1;
1560 last = GD_minrank(g);
1561 if (GD_maxrank(g) < GD_maxrank(Root))
1562 first++;
1563 dir = -1;
1564 }
1565
1566 for (r = first; r != last + dir; r += dir) {
1567 other = r - dir;
1568 bool hasfixed = medians(g, r, other);
1569 reorder(g, r, reverse, hasfixed);
1570 }
1571 transpose(g, !reverse);
1572}
1573
1574static int local_cross(elist l, int dir)
1575{
1576 int i, j;
1577 int cross = 0;
1578 edge_t *e, *f;
1579 bool is_out = dir > 0;
1580 for (i = 0; (e = l.list[i]); i++) {
1581 if (is_out)
1582 for (j = i + 1; (f = l.list[j]); j++) {
1583 if ((ND_order(aghead(f)) - ND_order(aghead(e)))
1584 * (ED_tail_port(f).p.x - ED_tail_port(e).p.x) < 0)
1585 cross += ED_xpenalty(e) * ED_xpenalty(f);
1586 } else
1587 for (j = i + 1; (f = l.list[j]); j++) {
1588 if ((ND_order(agtail(f)) - ND_order(agtail(e)))
1589 * (ED_head_port(f).p.x - ED_head_port(e).p.x) < 0)
1590 cross += ED_xpenalty(e) * ED_xpenalty(f);
1591 }
1592 }
1593 return cross;
1594}
1595
1596static int64_t rcross(graph_t *g, int r) {
1597 int top, bot, max, i, k;
1598 node_t **rtop, *v;
1599
1600 int64_t cross = 0;
1601 max = 0;
1602 rtop = GD_rank(g)[r].v;
1603
1604 int *Count = gv_calloc(GD_rank(Root)[r + 1].n + 1, sizeof(int));
1605
1606 for (top = 0; top < GD_rank(g)[r].n; top++) {
1607 edge_t *e;
1608 if (max > 0) {
1609 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1610 for (k = ND_order(aghead(e)) + 1; k <= max; k++)
1611 cross += Count[k] * ED_xpenalty(e);
1612 }
1613 }
1614 for (i = 0; (e = ND_out(rtop[top]).list[i]); i++) {
1615 int inv = ND_order(aghead(e));
1616 if (inv > max)
1617 max = inv;
1618 Count[inv] += ED_xpenalty(e);
1619 }
1620 }
1621 for (top = 0; top < GD_rank(g)[r].n; top++) {
1622 v = GD_rank(g)[r].v[top];
1623 if (ND_has_port(v))
1624 cross += local_cross(ND_out(v), 1);
1625 }
1626 for (bot = 0; bot < GD_rank(g)[r + 1].n; bot++) {
1627 v = GD_rank(g)[r + 1].v[bot];
1628 if (ND_has_port(v))
1629 cross += local_cross(ND_in(v), -1);
1630 }
1631 free(Count);
1632 return cross;
1633}
1634
1635static int64_t ncross(void) {
1636 int r;
1637
1638 graph_t *g = Root;
1639 int64_t count = 0;
1640 for (r = GD_minrank(g); r < GD_maxrank(g); r++) {
1641 if (GD_rank(g)[r].valid)
1642 count += GD_rank(g)[r].cache_nc;
1643 else {
1644 const int64_t nc = GD_rank(g)[r].cache_nc = rcross(g, r);
1645 count += nc;
1646 GD_rank(g)[r].valid = true;
1647 }
1648 }
1649 return count;
1650}
1651
1652static int ordercmpf(const void *x, const void *y) {
1653 const int *i0 = x;
1654 const int *i1 = y;
1655 if (*i0 < *i1) {
1656 return -1;
1657 }
1658 if (*i0 > *i1) {
1659 return 1;
1660 }
1661 return 0;
1662}
1663
1664/* Calculate a mval for nodes with no in or out non-flat edges.
1665 * Assume (ND_out(n).size == 0) && (ND_in(n).size == 0)
1666 * Find flat edge a->n where a has the largest order and set
1667 * n.mval = a.mval+1, assuming a.mval is defined (>=0).
1668 * If there are no flat in edges, find flat edge n->a where a
1669 * has the smallest order and set * n.mval = a.mval-1, assuming
1670 * a.mval is > 0.
1671 * Return true if n.mval is left -1, indicating a fixed node for sorting.
1672 */
1673static bool flat_mval(node_t * n)
1674{
1675 int i;
1676 edge_t *e, **fl;
1677 node_t *nn;
1678
1679 if (ND_flat_in(n).size > 0) {
1680 fl = ND_flat_in(n).list;
1681 nn = agtail(fl[0]);
1682 for (i = 1; (e = fl[i]); i++)
1683 if (ND_order(agtail(e)) > ND_order(nn))
1684 nn = agtail(e);
1685 if (ND_mval(nn) >= 0) {
1686 ND_mval(n) = ND_mval(nn) + 1;
1687 return false;
1688 }
1689 } else if (ND_flat_out(n).size > 0) {
1690 fl = ND_flat_out(n).list;
1691 nn = aghead(fl[0]);
1692 for (i = 1; (e = fl[i]); i++)
1693 if (ND_order(aghead(e)) < ND_order(nn))
1694 nn = aghead(e);
1695 if (ND_mval(nn) > 0) {
1696 ND_mval(n) = ND_mval(nn) - 1;
1697 return false;
1698 }
1699 }
1700 return true;
1701}
1702
1703#define VAL(node,port) (MC_SCALE * ND_order(node) + (port).order)
1704
1705static bool medians(graph_t * g, int r0, int r1)
1706{
1707 int i, j0, lspan, rspan, *list;
1708 node_t *n, **v;
1709 edge_t *e;
1710 bool hasfixed = false;
1711
1712 list = TI_list;
1713 v = GD_rank(g)[r0].v;
1714 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1715 n = v[i];
1716 size_t j = 0;
1717 if (r1 > r0)
1718 for (j0 = 0; (e = ND_out(n).list[j0]); j0++) {
1719 if (ED_xpenalty(e) > 0)
1720 list[j++] = VAL(aghead(e), ED_head_port(e));
1721 } else
1722 for (j0 = 0; (e = ND_in(n).list[j0]); j0++) {
1723 if (ED_xpenalty(e) > 0)
1724 list[j++] = VAL(agtail(e), ED_tail_port(e));
1725 }
1726 switch (j) {
1727 case 0:
1728 ND_mval(n) = -1;
1729 break;
1730 case 1:
1731 ND_mval(n) = list[0];
1732 break;
1733 case 2:
1734 ND_mval(n) = (list[0] + list[1]) / 2;
1735 break;
1736 default:
1737 qsort(list, j, sizeof(int), ordercmpf);
1738 if (j % 2)
1739 ND_mval(n) = list[j / 2];
1740 else {
1741 /* weighted median */
1742 size_t rm = j / 2;
1743 size_t lm = rm - 1;
1744 rspan = list[j - 1] - list[rm];
1745 lspan = list[lm] - list[0];
1746 if (lspan == rspan)
1747 ND_mval(n) = (list[lm] + list[rm]) / 2;
1748 else {
1749 double w = list[lm] * (double)rspan + list[rm] * (double)lspan;
1750 ND_mval(n) = w / (lspan + rspan);
1751 }
1752 }
1753 }
1754 }
1755 for (i = 0; i < GD_rank(g)[r0].n; i++) {
1756 n = v[i];
1757 if (ND_out(n).size == 0 && ND_in(n).size == 0)
1758 hasfixed |= flat_mval(n);
1759 }
1760 return hasfixed;
1761}
1762
1763static int nodeposcmpf(const void *x, const void *y) {
1764// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1765// as the later usage is const. We need the cast because the macros use
1766// non-const pointers for genericity.
1767#ifdef __GNUC__
1768#pragma GCC diagnostic push
1769#pragma GCC diagnostic ignored "-Wcast-qual"
1770#endif
1771 node_t **n0 = (node_t **)x;
1772 node_t **n1 = (node_t **)y;
1773#ifdef __GNUC__
1774#pragma GCC diagnostic pop
1775#endif
1776 if (ND_order(*n0) < ND_order(*n1)) {
1777 return -1;
1778 }
1779 if (ND_order(*n0) > ND_order(*n1)) {
1780 return 1;
1781 }
1782 return 0;
1783}
1784
1785static int edgeidcmpf(const void *x, const void *y) {
1786// Suppress Clang/GCC -Wcast-qual warning. Casting away const here is acceptable
1787// as the later usage is const. We need the cast because the macros use
1788// non-const pointers for genericity.
1789#ifdef __GNUC__
1790#pragma GCC diagnostic push
1791#pragma GCC diagnostic ignored "-Wcast-qual"
1792#endif
1793 edge_t **e0 = (edge_t **)x;
1794 edge_t **e1 = (edge_t **)y;
1795#ifdef __GNUC__
1796#pragma GCC diagnostic pop
1797#endif
1798 if (AGSEQ(*e0) < AGSEQ(*e1)) {
1799 return -1;
1800 }
1801 if (AGSEQ(*e0) > AGSEQ(*e1)) {
1802 return 1;
1803 }
1804 return 0;
1805}
1806
1807/* following code deals with weights of edges of "virtual" nodes */
1808#define ORDINARY 0
1809#define SINGLETON 1
1810#define VIRTUALNODE 2
1811#define NTYPES 3
1812
1813#define C_EE 1
1814#define C_VS 2
1815#define C_SS 2
1816#define C_VV 4
1817
1818static int table[NTYPES][NTYPES] = {
1819 /* ordinary */ {C_EE, C_EE, C_EE},
1820 /* singleton */ {C_EE, C_SS, C_VS},
1821 /* virtual */ {C_EE, C_VS, C_VV}
1822};
1823
1824static int endpoint_class(node_t * n)
1825{
1826 if (ND_node_type(n) == VIRTUAL)
1827 return VIRTUALNODE;
1828 if (ND_weight_class(n) <= 1)
1829 return SINGLETON;
1830 return ORDINARY;
1831}
1832
1834{
1835 int t;
1837
1838 /* check whether the upcoming computation will overflow */
1839 assert(t >= 0);
1840 if (INT_MAX / t < ED_weight(e)) {
1841 agerrorf("overflow when calculating virtual weight of edge\n");
1842 graphviz_exit(EXIT_FAILURE);
1843 }
1844
1845 ED_weight(e) *= t;
1846}
1847
1848#ifdef DEBUG
1849void check_rs(graph_t * g, int null_ok)
1850{
1851 int i, r;
1852 node_t *v, *prev;
1853
1854 fprintf(stderr, "\n\n%s:\n", agnameof(g));
1855 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1856 fprintf(stderr, "%d: ", r);
1857 prev = NULL;
1858 for (i = 0; i < GD_rank(g)[r].n; i++) {
1859 v = GD_rank(g)[r].v[i];
1860 if (v == NULL) {
1861 fprintf(stderr, "NULL\t");
1862 if (!null_ok)
1863 abort();
1864 } else {
1865 fprintf(stderr, "%s(%f)\t", agnameof(v), ND_mval(v));
1866 assert(ND_rank(v) == r);
1867 assert(v != prev);
1868 prev = v;
1869 }
1870 }
1871 fprintf(stderr, "\n");
1872 }
1873}
1874
1875void check_order(void)
1876{
1877 int i, r;
1878 node_t *v;
1879 graph_t *g = Root;
1880
1881 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1882 assert(GD_rank(g)[r].v[GD_rank(g)[r].n] == NULL);
1883 for (i = 0; (v = GD_rank(g)[r].v[i]); i++) {
1884 assert(ND_rank(v) == r);
1885 assert(ND_order(v) == i);
1886 }
1887 }
1888}
1889#endif
1890
1892{
1893 char *p;
1894 double f;
1895
1896 /* set default values */
1897 MinQuit = 8;
1898 MaxIter = 24;
1899
1900 p = agget(g, "mclimit");
1901 if (p && (f = atof(p)) > 0.0) {
1902 MinQuit = MAX(1, scale_clamp(MinQuit, f));
1903 MaxIter = MAX(1, scale_clamp(MaxIter, f));
1904 }
1905}
1906
1907#ifdef DEBUG
1908void check_exchange(node_t * v, node_t * w)
1909{
1910 int i, r;
1911 node_t *u;
1912
1913 if (ND_clust(v) == NULL && ND_clust(w) == NULL)
1914 return;
1915 assert(ND_clust(v) == NULL || ND_clust(w) == NULL);
1916 assert(ND_rank(v) == ND_rank(w));
1917 assert(ND_order(v) < ND_order(w));
1918 r = ND_rank(v);
1919
1920 for (i = ND_order(v) + 1; i < ND_order(w); i++) {
1921 u = GD_rank(dot_root(v))[r].v[i];
1922 if (ND_clust(u))
1923 abort();
1924 }
1925}
1926
1927void check_vlists(graph_t * g)
1928{
1929 int c, i, j, r;
1930 node_t *u;
1931
1932 for (r = GD_minrank(g); r <= GD_maxrank(g); r++) {
1933 for (i = 0; i < GD_rank(g)[r].n; i++) {
1934 u = GD_rank(g)[r].v[i];
1935 j = ND_order(u);
1936 assert(GD_rank(Root)[r].v[j] == u);
1937 }
1938 if (GD_rankleader(g)) {
1939 u = GD_rankleader(g)[r];
1940 j = ND_order(u);
1941 assert(GD_rank(Root)[r].v[j] == u);
1942 }
1943 }
1944 for (c = 1; c <= GD_n_cluster(g); c++)
1945 check_vlists(GD_clust(g)[c]);
1946}
1947
1948void node_in_root_vlist(node_t * n)
1949{
1950 node_t **vptr;
1951
1952 for (vptr = GD_rank(Root)[ND_rank(n)].v; *vptr; vptr++)
1953 if (*vptr == n)
1954 break;
1955 if (*vptr == 0)
1956 abort();
1957}
1958#endif /* DEBUG code */
static agxbuf last
last message
Definition agerror.c:29
Memory allocation wrappers that exit on failure.
static void * gv_calloc(size_t nmemb, size_t size)
Definition alloc.h:26
static void * gv_alloc(size_t size)
Definition alloc.h:47
#define MIN(a, b)
Definition arith.h:28
#define MAX(a, b)
Definition arith.h:33
API for compacted arrays of booleans.
static bitarray_t bitarray_new(size_t size_bits)
create an array of the given element length
Definition bitarray.h:47
static void bitarray_clear(bitarray_t *self)
clear all bits in a bit array
Definition bitarray.h:99
static bool bitarray_get(bitarray_t self, size_t index)
get the value of the given element
Definition bitarray.h:65
static void bitarray_set(bitarray_t *self, size_t index, bool value)
set or clear the value of the given element
Definition bitarray.h:80
static void bitarray_reset(bitarray_t *self)
free underlying resources and leave a bit array empty
Definition bitarray.h:114
abstract graph C library, Cgraph API
void class2(graph_t *g)
Definition class2.c:153
bool mapbool(const char *p)
Definition utils.c:339
char * late_string(void *obj, attrsym_t *attr, char *defaultValue)
Definition utils.c:81
#define NORMAL
Definition const.h:24
#define FLATORDER
Definition const.h:28
#define NEW_RANK
Definition const.h:243
#define VIRTUAL
Definition const.h:25
#define CLUSTER
Definition const.h:40
#define REVERSED
Definition const.h:27
void decompose(graph_t *g, int pass)
Definition decomp.c:106
Agraph_t * dot_root(void *p)
Definition dotinit.c:520
bool is_cluster(Agraph_t *)
Definition rank.c:530
void flat_edge(Agraph_t *, Agedge_t *)
Definition fastgr.c:213
void merge_oneway(Agedge_t *, Agedge_t *)
Definition fastgr.c:287
Agedge_t * new_virtual_edge(Agnode_t *, Agnode_t *, Agedge_t *)
Definition fastgr.c:129
Agedge_t * find_flat_edge(Agnode_t *, Agnode_t *)
Definition fastgr.c:54
void delete_flat_edge(Agedge_t *)
Definition fastgr.c:220
static NORETURN void graphviz_exit(int status)
Definition exit.h:23
int MaxIter
Definition globals.h:61
Agsym_t * G_ordering
Definition globals.h:71
Agsym_t * N_ordering
Definition globals.h:77
static bool Verbose
Definition gml2gv.c:24
void free(void *)
node NULL
Definition grammar.y:181
static int cnt(Dict_t *d, Dtlink_t **set)
Definition graph.c:196
int agnedges(Agraph_t *g)
Definition graph.c:161
int agdegree(Agraph_t *g, Agnode_t *n, int in, int out)
Definition graph.c:223
int agnnodes(Agraph_t *g)
Definition graph.c:155
char * agget(void *obj, char *name)
Definition attr.c:448
#define ED_to_orig(e)
Definition types.h:598
Agedge_t * agedge(Agraph_t *g, Agnode_t *t, Agnode_t *h, char *name, int createflag)
Definition edge.c:253
int agdeledge(Agraph_t *g, Agedge_t *arg_e)
Definition edge.c:327
Agedge_t * agnxtin(Agraph_t *g, Agedge_t *e)
Definition edge.c:71
#define ED_xpenalty(e)
Definition types.h:601
Agedge_t * agfstout(Agraph_t *g, Agnode_t *n)
Definition edge.c:26
#define agtail(e)
Definition cgraph.h:977
#define ED_edge_type(e)
Definition types.h:582
#define ED_weight(e)
Definition types.h:603
#define aghead(e)
Definition cgraph.h:978
Agedge_t * agnxtout(Agraph_t *g, Agedge_t *e)
Definition edge.c:41
#define ED_head_port(e)
Definition types.h:588
Agedge_t * agfstin(Agraph_t *g, Agnode_t *n)
Definition edge.c:57
#define ED_label(e)
Definition types.h:589
#define ED_tail_port(e)
Definition types.h:597
void agwarningf(const char *fmt,...)
Definition agerror.c:173
void agerrorf(const char *fmt,...)
Definition agerror.c:165
#define GD_minrank(g)
Definition types.h:384
#define GD_maxrank(g)
Definition types.h:382
#define GD_clust(g)
Definition types.h:360
int agclose(Agraph_t *g)
deletes a graph, freeing its associated storage
Definition graph.c:95
#define GD_flags(g)
Definition types.h:365
#define GD_rank(g)
Definition types.h:395
#define GD_has_flat_edges(g)
Definition types.h:370
#define GD_nlist(g)
Definition types.h:393
Agdesc_t Agstrictdirected
strict directed. A strict graph cannot have multi-edges or self-arcs.
Definition graph.c:271
#define GD_n_cluster(g)
Definition types.h:389
Agraph_t * agopen(char *name, Agdesc_t desc, Agdisc_t *disc)
creates a new graph with the given name and kind
Definition graph.c:42
#define GD_comp(g)
Definition types.h:362
#define GD_flip(g)
Definition types.h:378
#define GD_rankleader(g)
Definition types.h:396
Agnode_t * agnode(Agraph_t *g, char *name, int createflag)
Definition node.c:141
#define ND_rank(n)
Definition types.h:523
#define ND_prev(n)
Definition types.h:521
#define ND_ht(n)
Definition types.h:500
Agnode_t * agnxtnode(Agraph_t *g, Agnode_t *n)
Definition node.c:48
Agnode_t * agfstnode(Agraph_t *g)
Definition node.c:41
#define ND_has_port(n)
Definition types.h:495
#define ND_next(n)
Definition types.h:510
Agnode_t * agsubnode(Agraph_t *g, Agnode_t *n, int createflag)
Definition node.c:252
#define ND_clust(n)
Definition types.h:489
#define ND_other(n)
Definition types.h:514
#define ND_alg(n)
Definition types.h:484
#define ND_flat_out(n)
Definition types.h:493
#define ND_rw(n)
Definition types.h:525
#define ND_node_type(n)
Definition types.h:511
#define ND_lw(n)
Definition types.h:506
#define ND_mval(n)
Definition types.h:508
int agdelnode(Agraph_t *g, Agnode_t *arg_n)
removes a node from a graph or subgraph.
Definition node.c:190
#define ND_order(n)
Definition types.h:513
#define ND_UF_size(n)
Definition types.h:487
#define ND_weight_class(n)
Definition types.h:535
#define ND_low(n)
Definition types.h:505
#define ND_ranktype(n)
Definition types.h:524
#define ND_flat_in(n)
Definition types.h:492
#define ND_in(n)
Definition types.h:501
#define ND_out(n)
Definition types.h:515
char * agnameof(void *)
returns a string descriptor for the object.
Definition id.c:143
int agcontains(Agraph_t *, void *obj)
returns non-zero if obj is a member of (sub)graph
Definition obj.c:233
Agraph_t * agroot(void *obj)
Definition obj.c:168
#define AGSEQ(obj)
Definition cgraph.h:225
void * agbindrec(void *obj, const char *name, unsigned int recsize, int move_to_front)
attaches a new record of the given size to the object
Definition rec.c:89
Agraph_t * agfstsubg(Agraph_t *g)
Definition subg.c:73
Agraph_t * agnxtsubg(Agraph_t *subg)
Definition subg.c:78
Agraph_t * agsubg(Agraph_t *g, char *name, int cflag)
Definition subg.c:53
static void indent(int ix)
Definition gv2gml.c:94
bool rm(Agraph_t *g)
Definition gv.cpp:586
Arithmetic helper functions.
static int scale_clamp(int original, double scale)
scale up or down a non-negative integer, clamping to [0, INT_MAX]
Definition gv_math.h:76
#define SWAP(a, b)
Definition gv_math.h:134
static size_t zmax(size_t a, size_t b)
maximum of two sizes
Definition gv_math.h:29
$2 prev
Definition htmlparse.y:291
rows row
Definition htmlparse.y:320
static double cross(double *u, double *v)
#define ITOS(i)
Definition itos.h:43
#define ND_onstack(n)
Definition acyclic.c:29
#define ND_mark(n)
Definition acyclic.c:28
static Agedge_t * top(edge_stack_t *sp)
Definition tred.c:73
int install_cluster(graph_t *g, node_t *n, int pass, node_queue_t *q)
Definition cluster.c:378
int expand_cluster(graph_t *subg)
Definition cluster.c:278
void mark_lowclusters(Agraph_t *root)
Definition cluster.c:398
#define exchange(h, i, j, index)
Definition dijkstra.c:45
type-generic dynamically expanding list
#define LIST(type)
Definition list.h:55
#define LIST_POP_FRONT(list)
Definition list.h:394
#define LIST_CLEAR(list)
Definition list.h:240
#define LIST_APPEND(list, item)
Definition list.h:120
#define LIST_FREE(list)
Definition list.h:370
#define LIST_IS_EMPTY(list)
Definition list.h:90
#define LIST_PUSH_BACK(list, item)
Definition list.h:384
#define LIST_REVERSE(list)
Definition list.h:348
#define LIST_GET(list, index)
Definition list.h:155
#define neighbor(t, i, edim, elist)
Definition make_map.h:41
#define delta
Definition maze.c:136
#define isBackedge(e)
Definition mincross.c:269
static int betweenclust(edge_t *e)
Definition mincross.c:506
#define ND_hi(n)
Definition mincross.c:253
#define flatindex(v)
Definition mincross.c:112
static void free_matrix(adjmatrix_t *p)
Definition mincross.c:486
static bool ReMincross
Definition mincross.c:163
static bool flat_mval(node_t *n)
Definition mincross.c:1673
static bool inside_cluster(graph_t *g, node_t *v)
Definition mincross.c:985
#define ND_x(n)
Definition mincross.c:251
static int64_t mincross(graph_t *g, int startpass)
Definition mincross.c:772
#define ORDINARY
Definition mincross.c:1808
static void init_mccomp(graph_t *g, size_t c)
Definition mincross.c:494
static void mincross_step(graph_t *g, int pass)
Definition mincross.c:1546
static int topsort(Agraph_t *g, Agraph_t *sg, Agnode_t **arr)
Definition mincross.c:282
static bool medians(graph_t *g, int r0, int r1)
Definition mincross.c:1705
static void reorder(graph_t *g, int r, bool reverse, bool hasfixed)
Definition mincross.c:1494
#define VAL(node, port)
Definition mincross.c:1703
static int edgeidcmpf(const void *, const void *)
Definition mincross.c:1785
static void flat_breakcycles(graph_t *g)
Definition mincross.c:1187
static void cleanup2(graph_t *g, int64_t nc)
Definition mincross.c:917
#define MARK(v)
Definition mincross.c:110
static bool is_a_normal_node_of(graph_t *g, node_t *v)
Definition mincross.c:969
static void save_best(graph_t *g)
Definition mincross.c:853
#define C_VS
Definition mincross.c:1814
static void init_mincross(graph_t *g)
Definition mincross.c:1104
static int64_t rcross(graph_t *g, int r)
Definition mincross.c:1596
static Agraph_t * realFillRanks(Agraph_t *g, bitarray_t *ranks, Agraph_t *sg)
Definition mincross.c:1058
#define ND_np(n)
Definition mincross.c:254
static int64_t transpose_step(graph_t *g, int r, bool reverse)
Definition mincross.c:714
static void fixLabelOrder(graph_t *g, rank_t *rk)
for each pair of nodes (labels), we add an edge
Definition mincross.c:324
void virtual_weight(edge_t *e)
Definition mincross.c:1833
static void merge2(graph_t *g)
Definition mincross.c:890
static int64_t mincross_clust(graph_t *g)
Definition mincross.c:613
static node_t * furthestnode(graph_t *g, node_t *v, int dir)
Definition mincross.c:989
static int out_cross(node_t *v, node_t *w)
Definition mincross.c:682
static int ordercmpf(const void *, const void *)
Definition mincross.c:1652
void enqueue_neighbors(node_queue_t *q, node_t *n0, int pass)
Definition mincross.c:1370
static void do_ordering(graph_t *g, bool outflag)
Definition mincross.c:553
static void matrix_set(adjmatrix_t *me, size_t row, size_t col)
Definition mincross.c:70
void checkLabelOrder(graph_t *g)
Definition mincross.c:378
static int GlobalMinRank
Definition mincross.c:160
static const double Convergence
Definition mincross.c:157
int build_ranks(graph_t *g, int pass)
Definition mincross.c:1294
#define SINGLETON
Definition mincross.c:1809
static Agnode_t * findSource(Agraph_t *g, Agraph_t *sg)
Definition mincross.c:272
static int * TI_list
Definition mincross.c:162
void rec_save_vlists(graph_t *g)
Definition mincross.c:1011
#define C_EE
Definition mincross.c:1813
static void do_ordering_node(graph_t *g, node_t *n, bool outflag)
Definition mincross.c:513
static int64_t in_cross(node_t *v, node_t *w)
Definition mincross.c:663
static graph_t * Root
Definition mincross.c:159
static adjmatrix_t * new_matrix(size_t initial_rows, size_t initial_columns)
Definition mincross.c:477
#define C_VV
Definition mincross.c:1816
static void flat_search(graph_t *g, node_t *v)
Definition mincross.c:1155
static void ordered_edges(graph_t *g)
Definition mincross.c:586
static void transpose(graph_t *g, bool reverse)
Definition mincross.c:755
#define NTYPES
Definition mincross.c:1811
void rec_reset_vlists(graph_t *g)
Definition mincross.c:1021
static void merge_components(graph_t *g)
Definition mincross.c:866
int dot_mincross(graph_t *g)
Definition mincross.c:412
static int64_t ncross(void)
Definition mincross.c:1635
static void mincross_options(graph_t *g)
Definition mincross.c:1891
static int endpoint_class(node_t *n)
Definition mincross.c:1824
static int getComp(graph_t *g, node_t *n, graph_t *comp, int *indices)
Definition mincross.c:301
static int GlobalMaxRank
Definition mincross.c:160
static bool left2right(graph_t *g, node_t *v, node_t *w)
Definition mincross.c:639
static int local_cross(elist l, int dir)
Definition mincross.c:1574
static void flat_reorder(graph_t *g)
Definition mincross.c:1423
#define C_SS
Definition mincross.c:1815
static void flat_rev(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1128
static void emptyComp(graph_t *sg)
Definition mincross.c:258
static bool is_a_vnode_of_an_edge_of(graph_t *g, node_t *v)
Definition mincross.c:973
static void fillRanks(Agraph_t *g)
Definition mincross.c:1096
static void do_ordering_for_nodes(graph_t *g)
Definition mincross.c:562
static int MinQuit
Definition mincross.c:156
static edge_t ** TE_list
Definition mincross.c:161
void allocate_ranks(graph_t *g)
Definition mincross.c:1218
#define ND_lo(n)
Definition mincross.c:252
static int table[NTYPES][NTYPES]
Definition mincross.c:1818
static void restore_best(graph_t *g)
Definition mincross.c:835
static bool matrix_get(adjmatrix_t *me, size_t row, size_t col)
Definition mincross.c:48
static bool constraining_flat_edge(Agraph_t *g, Agedge_t *e)
Definition mincross.c:1392
#define ND_idx(n)
Definition mincross.c:255
static int nodeposcmpf(const void *, const void *)
Definition mincross.c:1763
#define saveorder(v)
Definition mincross.c:111
void save_vlist(graph_t *g)
Definition mincross.c:1001
int install_in_rank(graph_t *g, node_t *n)
Definition mincross.c:1246
#define VIRTUALNODE
Definition mincross.c:1810
#define M
Definition randomkit.c:90
static bool streq(const char *a, const char *b)
are a and b equal?
Definition streq.h:11
Agobj_t base
Definition cgraph.h:269
Agrec_t * data
stores programmer-defined data, access with AGDATA
Definition cgraph.h:212
graph or subgraph
Definition cgraph.h:424
Agraph_t * parent
Definition cgraph.h:433
implementation of Agrec_t
Definition cgraph.h:172
size_t nrows
how many rows have been allocated?
Definition mincross.c:37
uint8_t * data
bit-packed backing memory
Definition mincross.c:39
size_t ncols
how many columns have been allocated?
Definition mincross.c:38
Definition types.h:251
edge_t ** list
Definition types.h:252
int hi
Definition mincross.c:247
Agrec_t h
Definition mincross.c:246
Agnode_t * np
Definition mincross.c:248
node_t ** v
Definition types.h:202
int n
Definition types.h:201
double elapsed_sec(void)
Definition timing.c:21
void start_timer(void)
Definition timing.c:19
#define elist_append(item, L)
Definition types.h:261
#define alloc_elist(n, L)
Definition types.h:267
Definition grammar.c:90